login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008627
Molien series for A_4.
1
1, 1, 2, 3, 5, 6, 10, 12, 17, 21, 28, 33, 43, 50, 62, 72, 87, 99, 118, 133, 155, 174, 200, 222, 253, 279, 314, 345, 385, 420, 466, 506, 557, 603, 660, 711, 775, 832, 902, 966, 1043, 1113, 1198, 1275, 1367, 1452, 1552, 1644, 1753, 1853, 1970, 2079, 2205, 2322
OFFSET
0,3
COMMENTS
With offset = 4: a(n) is the number of equivalence classes of compositions (summands >=1) of n into exactly 4 parts where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions. For example, let the class representatives be the last such composition in lexicographic order. a(10)=10 because we have the following nine partitions of 10 into 4 parts, {7,1,1,1}, {6,2,1,1}, {5,3,1,1}, {5,2,2,1}, {4,4,1,1}, {4,3,2,1}, {4,2,2,2},{3,3,3,1}, {3,3,2,2} and the class represented by {3,4,2,1}. - Geoffrey Critzer, Oct 16 2012
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
FORMULA
a(n) ~ 1/72*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^2+x^4 ) / ( (1+x+x^2)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
MAPLE
(1+x^6)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4): seq(coeff(series(%, x, n+1), x, n), n=0..60);
MATHEMATICA
nn=50; CoefficientList[Series[CycleIndex[AlternatingGroup[4], s]/.Table[s[i]->x^i/(1-x^i), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 16 2012 *)
PROG
(Sage)
ring = PowerSeriesRing(ZZ, 'x', default_prec=50)
ms = AlternatingGroup(4).molien_series()
list(ring(ms))
# Ralf Stephan, Apr 29 2014
CROSSREFS
Sequence in context: A240026 A213212 A341124 * A130900 A007211 A027593
KEYWORD
nonn,easy
AUTHOR
STATUS
approved