OFFSET
0,7
COMMENTS
Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of O'Nan group.
Also Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Janko group J_1.
Molien series of 3-dimensional representation of group of order 21 over GF(2).
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, pp. 77, 95 and 248.
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 106.
LINKS
A. Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc., 44 (1997), 806-812.
A. Adem and R. J. Milgram, The subgroup structure and mod 2 cohomology of O'Nan's sporadic simple group, J. Algebra 176 (1995), 288-315.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,0,1,-1,0,-1,1).
FORMULA
G.f.: (x^4-x^2+1)*(x^4-x^3+x^2-x+1)/((1-x)*(1-x^3)*(1-x^7)). a(n)=a(n-3)+a(n-7)-a(n-10)+1, n>7.
G.f. can be written as q(x)/((1-x^8)(1-x^12)(1-x^14)) where q is a symmetric polynomial of degree 31 with nonnegative coefficients.
MAPLE
(1+x^3)*(1+x^5)*(1+x^6)/(1-x^4)/(1-x^6)/(1-x^7);
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1, 0, 0, 1, -1, 0, -1, 1}, {1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3}, 80] (* Vincenzo Librandi, Jul 19 2015 *)
PROG
(PARI) Vec((1+x^3)*(1+x^5)*(1+x^6)/(1-x^4)/(1-x^6)/(1-x^7) + O(x^80)) \\ Michel Marcus, Jul 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved