OFFSET
1,3
COMMENTS
a(n) is the number of 2's in the Kolakoski word of length n (see first formula below). - Jean-Christophe Hervé, Oct 05 2014
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..10000
O. Bordelles and B. Cloitre, Bounds for the Kolakoski Sequence, J. Integer Sequences, 14 (2011), #11.2.1.
Bertran Steinsky, A Recursive Formula for the Kolakoski Sequence A000002, J. Integer Sequences, Vol. 9 (2006), Article 06.3.7.
FORMULA
a(n)=#{1<=k<=n : A000002(k)=2}. - Benoit Cloitre, Feb 03 2009
a(n) = A054353(n) - n. - Nathaniel Johnston, May 02 2011
a(n) = n - A156077(n). - Jean-Christophe Hervé, Oct 05 2014
EXAMPLE
The Kolakoski sequence is 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, ...; the partial sums are 1, 3, 5, 6, 7, 9, ..., so the sequence is 1-1=0, 3-2=1, 5-3=2, 6-4=2, 7-5=2, 9-6=3, ... .
MATHEMATICA
a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 50}, {a2[[n]]}]; a3 = Accumulate[a2]; a3 - Range[Length[a3]] (* Jean-François Alcover, Jun 18 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Sep 21 2002
EXTENSIONS
Corrected offset from Nathaniel Johnston, May 02 2011
STATUS
approved