login
A074285
Sum of the divisors of n-th triangular number.
18
1, 4, 12, 18, 24, 32, 56, 91, 78, 72, 144, 168, 112, 192, 360, 270, 234, 260, 360, 576, 384, 288, 672, 868, 434, 560, 960, 720, 720, 768, 992, 1488, 864, 864, 1872, 1482, 760, 1120, 2352, 1764, 1344, 1408, 1584, 2808, 1872, 1152, 2880, 3420, 1767, 2232
OFFSET
1,2
COMMENTS
By definition a(n) is also the sum of the divisors of n-th generalized hexagonal number. - Omar E. Pol, Nov 24 2015
FORMULA
a(n) = A000203(A000217(n)). - Omar E. Pol, Nov 24 2015
Sum_{k=1..n} a(k) ~ n^3/3. - Vaclav Kotesovec, Aug 18 2021
EXAMPLE
a(4)=18 because the sum of divisors of the 4th triangular number (i.e., 10) is 1 + 2 + 5 + 10 = 18.
MATHEMATICA
Table[DivisorSigma[1, n*(n + 1)/2], {n, 1, 100}] (* Vaclav Kotesovec, Aug 18 2021 *)
PROG
(PARI) a(n) = sigma(n*(n+1)/2); \\ Altug Alkan, Nov 24 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Shyam Sunder Gupta, Sep 21 2002
STATUS
approved