The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110659 a(n) = A028242(A110654(n)). 2
 1, 0, 0, 2, 2, 1, 1, 3, 3, 2, 2, 4, 4, 3, 3, 5, 5, 4, 4, 6, 6, 5, 5, 7, 7, 6, 6, 8, 8, 7, 7, 9, 9, 8, 8, 10, 10, 9, 9, 11, 11, 10, 10, 12, 12, 11, 11, 13, 13, 12, 12, 14, 14, 13, 13, 15, 15, 14, 14, 16, 16, 15, 15, 17, 17, 16, 16, 18, 18, 17, 17, 19, 19, 18, 18, 20, 20, 19, 19, 21, 21, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = floor(n/4) - (n mod 4) mod 3 + floor((2 + n mod 4)/2). a(n) = (2*n + 3 + 6*cos(n*Pi/2) - cos(n*Pi) - 6*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017 a(n + 4) = a(n) + 1 so a(n + 8) = 2 * a(n + 4) - a(n). - David A. Corneth, Oct 02 2017 G.f.: (1 + 2*x^3 - x - x^4)/((1 + x)*(1 - x)^2*(1 + x^2)). - R. J. Mathar, May 22 2019 E.g.f.: (3*cos(x) + cosh(x)*(1 + x) - 3*sin(x) + (2 + x)*sinh(x))/4. - Stefano Spezia, Jan 03 2023 MATHEMATICA A028242[n_] := (1 + 2*n + 3*(-1)^n)/4; Table[A028242[Ceiling[n/2]], {n, 0, 100}] (* G. C. Greubel, Sep 03 2017 *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 0, 0, 2, 2}, 100] (* Harvey P. Dale, Jul 05 2020 *) PROG (PARI) vector(100, n, n--; (1/4)*(1 + 2*ceil(n/2) + 3*(-1)^(ceil(n/2)))) \\ G. C. Greubel, Sep 03 2017 (PARI) a(n) = (n\4) + [1, 0, 0, 2][1+n%4] \\ David A. Corneth, Oct 02 2017 (PARI) first(n) = my(c = res = [1, 0, 0, 2]); for(i=1, (n-1)\4, c += [1, 1, 1, 1]; res = concat(res, c)); res \\ David A. Corneth, Oct 02 2017 (Magma) b:= func< n | (1 + 2*n + 3*(-1)^n)/4 >; [b(Ceiling(n/2)): n in [0..100]]; // G. C. Greubel, May 22 2019 (Sage) ((1+2*x^3-x-x^4)/((1-x)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019 CROSSREFS Cf. A008624, A028242, A110654. Sequence in context: A348841 A295515 A348890 * A308068 A100522 A258140 Adjacent sequences: A110656 A110657 A110658 * A110660 A110661 A110662 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Aug 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)