OFFSET
0,3
COMMENTS
a(floor(n/2)) = A002378(n).
Sum of the even numbers among the smallest parts in the partitions of 2n into two parts (see example). - Wesley Ivan Hurt, Jul 25 2014
For n > 0, a(n-1) is the sum of the smallest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 06 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Eric Weisstein's World of Mathematics, Pronic Number
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
a(n) = floor(n/2) * (floor(n/2)+1).
From Wesley Ivan Hurt, Jul 25 2014: (Start)
G.f.: 2*x^2/((1-x)^3*(1+x)^2);
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), for n > 4;
a(n) = (2*n^2 + 2*n - 1 + (2*n + 1)*(-1)^n)/8. (End)
a(n) = Sum_{i=1..n; i even} i. - Olivier Pirson, Nov 05 2017
EXAMPLE
a(4) = 6; The partitions of 2*4 = 8 into two parts are: (7,1), (6,2), (5,3), (4,4). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
a(5) = 6; The partitions of 2*5 = 10 into two parts are: (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
MAPLE
MATHEMATICA
Table[Floor[n/2] (Floor[n/2] + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jul 25 2014 *)
CoefficientList[Series[2*x^2/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 25 2014 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 0, 2, 2, 6}, 60] (* Harvey P. Dale, Jan 23 2021 *)
PROG
(Magma) k:=1; f:=func<n | n*(k*n+1)>; [0] cat [f(n*m): m in [-1, 1], n in [1..30]]; // Bruno Berselli, Nov 14 2012
(PARI) a(n)=n\=2; n*(n+1) \\ Charles R Greathouse IV, Jul 05 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 05 2005
EXTENSIONS
Typo in description (Name) fixed by Harvey P. Dale, Jul 09 2021
STATUS
approved