login
A110660
Oblong (promic) numbers repeated.
15
0, 0, 2, 2, 6, 6, 12, 12, 20, 20, 30, 30, 42, 42, 56, 56, 72, 72, 90, 90, 110, 110, 132, 132, 156, 156, 182, 182, 210, 210, 240, 240, 272, 272, 306, 306, 342, 342, 380, 380, 420, 420, 462, 462, 506, 506, 552, 552, 600, 600, 650, 650, 702, 702, 756, 756, 812, 812
OFFSET
0,3
COMMENTS
a(floor(n/2)) = A002378(n).
Sum of the even numbers among the smallest parts in the partitions of 2n into two parts (see example). - Wesley Ivan Hurt, Jul 25 2014
For n > 0, a(n-1) is the sum of the smallest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 06 2017
LINKS
Eric Weisstein's World of Mathematics, Pronic Number
FORMULA
a(n) = floor(n/2) * (floor(n/2)+1).
a(n) = A028242(n) * A110654(n).
a(n) = A008805(n-2)*2, with A008805(-2) = A008805(-1) = 0.
From Wesley Ivan Hurt, Jul 25 2014: (Start)
G.f.: 2*x^2/((1-x)^3*(1+x)^2);
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), for n > 4;
a(n) = (2*n^2 + 2*n - 1 + (2*n + 1)*(-1)^n)/8. (End)
a(n) = Sum_{i=1..n; i even} i. - Olivier Pirson, Nov 05 2017
EXAMPLE
a(4) = 6; The partitions of 2*4 = 8 into two parts are: (7,1), (6,2), (5,3), (4,4). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
a(5) = 6; The partitions of 2*5 = 10 into two parts are: (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
MAPLE
A110660:=n->floor(n/2)*(floor(n/2)+1): seq(A110660(n), n=0..50); # Wesley Ivan Hurt, Jul 25 2014
MATHEMATICA
Table[Floor[n/2] (Floor[n/2] + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jul 25 2014 *)
CoefficientList[Series[2*x^2/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 25 2014 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 0, 2, 2, 6}, 60] (* Harvey P. Dale, Jan 23 2021 *)
PROG
(Magma) k:=1; f:=func<n | n*(k*n+1)>; [0] cat [f(n*m): m in [-1, 1], n in [1..30]]; // Bruno Berselli, Nov 14 2012
(PARI) a(n)=n\=2; n*(n+1) \\ Charles R Greathouse IV, Jul 05 2013
CROSSREFS
Cf. A109613.
Partial sums give A006584.
Sequence in context: A028476 A179478 A051548 * A332759 A139550 A337735
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 05 2005
EXTENSIONS
Typo in description (Name) fixed by Harvey P. Dale, Jul 09 2021
STATUS
approved