This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110660 Promic numbers repeated. 13
 0, 0, 2, 2, 6, 6, 12, 12, 20, 20, 30, 30, 42, 42, 56, 56, 72, 72, 90, 90, 110, 110, 132, 132, 156, 156, 182, 182, 210, 210, 240, 240, 272, 272, 306, 306, 342, 342, 380, 380, 420, 420, 462, 462, 506, 506, 552, 552, 600, 600, 650, 650, 702, 702, 756, 756, 812, 812 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(floor(n/2)) = A002378(n). Sum of the even numbers among the smallest parts in the partitions of 2n into two parts (see example). - Wesley Ivan Hurt, Jul 25 2014 For n > 0, a(n-1) is the sum of the smallest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 06 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Eric Weisstein's World of Mathematics, Pronic Number Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = floor(n/2) * (floor(n/2)+1). a(n) = A028242(n) * A110654(n). a(n) = A008805(n-2)*2, with A008805(-2) = A008805(-1) = 0. From Wesley Ivan Hurt, Jul 25 2014: (Start) G.f.: 2*x^2/((1-x)^3*(1+x)^2); a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), for n > 4; a(n) = (2*n^2 + 2*n - 1 + (2*n + 1)*(-1)^n)/8. (End) a(n) = Sum_{i=1..n; i even} i. - Olivier Pirson, Nov 05 2017 EXAMPLE a(4) = 6; The partitions of 2*4 = 8 into two parts are: (7,1), (6,2), (5,3), (4,4). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6. a(5) = 6; The partitions of 2*5 = 10 into two parts are: (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6. MAPLE A110660:=n->floor(n/2)*(floor(n/2)+1): seq(A110660(n), n=0..50); # Wesley Ivan Hurt, Jul 25 2014 MATHEMATICA Table[Floor[n/2] (Floor[n/2] + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jul 25 2014 *) CoefficientList[Series[2*x^2/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 25 2014 *) PROG (MAGMA) k:=1; f:=func;  cat [f(n*m): m in [-1, 1], n in [1..30]]; // Bruno Berselli, Nov 14 2012 (PARI) a(n)=n\=2; n*(n+1) \\ Charles R Greathouse IV, Jul 05 2013 CROSSREFS Cf. A109613. Partial sums give A006584. Sequence in context: A028476 A179478 A051548 * A139550 A060549 A228315 Adjacent sequences:  A110657 A110658 A110659 * A110661 A110662 A110663 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Aug 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 16:13 EDT 2019. Contains 324142 sequences. (Running on oeis4.)