The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230134 E.g.f. 1/(1 - sin(5*x))^(1/5). 4
 1, 1, 6, 41, 456, 6301, 108576, 2207981, 52012416, 1390239481, 41593598976, 1376769180401, 49955931795456, 1971671764875541, 84095262825824256, 3854514200269774901, 188942180401957502976, 9863099585213327293681, 546266997049408050364416, 31993839349571172423492281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f. A(x) satisfies: A(x) = (cos(5*x/2) - sin(5*x/2))^(-2/5). O.g.f.: 1/G(0) where G(k) = 1 - (5*k+1)*x - 5*(k+1)*(5*k+2)/2*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii]. a(n) ~ n! * sqrt(5+sqrt(5)) * GAMMA(3/5) * 2^(n-9/10) * 5^n / (n^(3/5) * Pi^(n+7/5)). - Vaclav Kotesovec, Jan 03 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 6*x^2/2! + 41*x^3/3! + 456*x^4/4! + 6301*x^5/5! +... O.g.f.: 1/(1-x - 5*1*2/2*x^2/(1-6*x - 5*2*7/2*x^2/(1-11*x - 5*3*12/2*x^2/(1-16*x - 5*4*17/2*x^2/(1-21*x - 5*5*22/2*x^2/(1-...)))))), a continued fraction. MATHEMATICA CoefficientList[Series[1/(1-Sin[5*x])^(1/5), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *) PROG (PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((1-sin(5*X))^(-1/5), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^(5/2)/subst(A^(5/2), x, -x)))); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A001586, A007788, A144015, A227544, A230114. Sequence in context: A006198 A167588 A323573 * A007130 A075000 A112960 Adjacent sequences:  A230131 A230132 A230133 * A230135 A230136 A230137 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 02:19 EDT 2021. Contains 347577 sequences. (Running on oeis4.)