login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230131
Number of permutations of order n with the length of longest run equal 8.
3
2, 32, 462, 6644, 98472, 1523808, 24744720, 422335056, 7575963254, 142706934722, 2819192544786, 58323311592602, 1261634626792744, 28492765388656632, 670804322638496378, 16439609940896532018, 418816100433422180196, 11077009292500273732470
OFFSET
8,1
LINKS
MAPLE
g:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(g(o+j-1, u-j, 2), j=1..u) +`if`(t<8,
add(g(u+j-1, o-j, t+1), j=1..o), 0))
end:
b:= proc(u, o, t) option remember; `if`(t=8, g(u, o, t),
add(b(o+j-1, u-j, 2), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> add(b(j-1, n-j, 1), j=1..n):
seq(a(n), n=8..30);
MATHEMATICA
length = 8;
g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t<length, Sum[g[u + j - 1, o - j, t+1], {j, 1, o}], 0]];
b[u_, o_, t_] := b[u, o, t] = If[t == length, g[u, o, t], Sum[b[o + j - 1, u - j, 2], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := Sum[b[j - 1, n - j, 1], {j, 1, n}];
Table[a[n], {n, length, 30}] (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
CROSSREFS
Column l=8 of A211318.
A diagonal of A010026.
Sequence in context: A230683 A294328 A109772 * A115418 A163952 A246213
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2013
STATUS
approved