login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of order n with the length of longest run equal 8.
3

%I #12 Aug 18 2018 08:38:35

%S 2,32,462,6644,98472,1523808,24744720,422335056,7575963254,

%T 142706934722,2819192544786,58323311592602,1261634626792744,

%U 28492765388656632,670804322638496378,16439609940896532018,418816100433422180196,11077009292500273732470

%N Number of permutations of order n with the length of longest run equal 8.

%H Alois P. Heinz, <a href="/A230131/b230131.txt">Table of n, a(n) for n = 8..450</a>

%p g:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p add(g(o+j-1, u-j, 2), j=1..u) +`if`(t<8,

%p add(g(u+j-1, o-j, t+1), j=1..o), 0))

%p end:

%p b:= proc(u, o, t) option remember; `if`(t=8, g(u, o, t),

%p add(b(o+j-1, u-j, 2), j=1..u)+

%p add(b(u+j-1, o-j, t+1), j=1..o))

%p end:

%p a:= n-> add(b(j-1, n-j, 1), j=1..n):

%p seq(a(n), n=8..30);

%t length = 8;

%t g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t<length, Sum[g[u + j - 1, o - j, t+1], {j, 1, o}], 0]];

%t b[u_, o_, t_] := b[u, o, t] = If[t == length, g[u, o, t], Sum[b[o + j - 1, u - j, 2], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];

%t a[n_] := Sum[b[j - 1, n - j, 1], {j, 1, n}];

%t Table[a[n], {n, length, 30}] (* _Jean-François Alcover_, Aug 18 2018, after _Alois P. Heinz_ *)

%Y Column l=8 of A211318.

%Y A diagonal of A010026.

%K nonn

%O 8,1

%A _Alois P. Heinz_, Oct 10 2013