login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163952
The number of functions in a finite set for which the sequence of composition powers ends in a length 3 cycle.
3
0, 0, 0, 2, 32, 480, 7880, 145320, 3009888, 69554240, 1779185360, 49995179520, 1532580072320, 50934256044672, 1825145974743000, 70172455476381440, 2882264153273207360, 125985060813367664640, 5840066736661562391968, 286204501001426735001600
OFFSET
0,4
COMMENTS
See A163951 for the cases ending with length 2 cycles and fixed points.
LINKS
FORMULA
a(n) ~ (2*exp(4/3)-exp(1)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017
EXAMPLE
Any period 3 permutation (or disjoint combinations) is one element to be counted.
For n=3, where there are only 2 cases: f1:{1,2,3}->{2,3,1} and f2:{1,2,3}->{3,1,2} but for n>3 there are other elements (non-permutations) to be counted (for instance, with n=5, we count with f:{1,2,3,4,5}->{2,4,5,3,4}).
MAPLE
b:= proc(n, m) option remember; `if`(m>3, 0, `if`(n=0, x^m, add(
(j-1)!*b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n)))
end:
a:= n-> coeff(add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n), x, 3):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 14 2017
MATHEMATICA
b[n_, m_] := b[n, m] = If[m>3, 0, If[n == 0, x^m, Sum[(j - 1)! b[n - j, LCM[m, j]] Binomial[n - 1, j - 1], {j, 1, n}]]];
a[n_] := If[n==0, 0, Coefficient[Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}], x, 3]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A222029.
Sequence in context: A109772 A230131 A115418 * A246213 A022028 A013776
KEYWORD
nonn
AUTHOR
Carlos Alves, Aug 07 2009
EXTENSIONS
a(0), a(8)-a(19) from Alois P. Heinz, Aug 14 2017
STATUS
approved