This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013776 a(n) = 2^(4*n+1). 7
 2, 32, 512, 8192, 131072, 2097152, 33554432, 536870912, 8589934592, 137438953472, 2199023255552, 35184372088832, 562949953421312, 9007199254740992, 144115188075855872, 2305843009213693952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) ~ -Pi*E(2*n)/B(2*n), E(n) Euler number, B(n) Bernoulli number. - Peter Luschny, Oct 28 2012 Equivalently, powers of 2 with final digit 2. - Muniru A Asiru, Mar 15 2019 a(5*n) = {2, 2097152, 2199023255552, ...} has initial and final digit equal 2. - Muniru A Asiru, Apr 17 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (16). FORMULA From Philippe Deléham, Nov 23 2008: (Start) a(n) = 16*a(n-1), n > 0, a(0) = 2. G.f.: 2/(1 - 16*x). (End) From Peter Bala, Nov 29 2015: (Start) a(n) = Sum_{k = 0..n} binomial(2*k,k)*binomial(4*n + 2 - 2*k, 2*n + 1 - k). Bisection of A264960. (End) a(n) = A000079(A016813(n)). - Michel Marcus, Nov 30 2015 a(n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A004171(2*n). - Peter Bala, Nov 25 2016 E.g.f.: 2*exp(16*x). - G. C. Greubel, Jun 30 2019 EXAMPLE G.f. = 2 + 32*x + 512*x^2 + 8192*x^3 + 131072*x^4 + 2097152*x^5 + ... MAPLE [2^(4*n+1)\$n=0..20]; # Muniru A Asiru, Apr 10 2019 MATHEMATICA 2^(4*Range[0, 20]+1) (* G. C. Greubel, Mar 15 2019 *) NestList[16#&, 2, 20] (* Harvey P. Dale, Jul 28 2019 *) PROG (MAGMA) [2^(4*n+1): n in [0..20]]; // Vincenzo Librandi, Jun 27 2011 (PARI) a(n)=2<<(4*n) \\ Charles R Greathouse IV, Apr 07 2012 (GAP) List([0..20], n->2^(4*n+1)); # Muniru A Asiru, Mar 15 2019 (Sage) [2^(4*n+1) for n in (0..20)] # G. C. Greubel, Mar 15 2019 CROSSREFS Cf. A000079, A016813, A264960, A004171. Sequence in context: A163952 A246213 A022028 * A174491 A022019 A010045 Adjacent sequences:  A013773 A013774 A013775 * A013777 A013778 A013779 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 12:36 EDT 2019. Contains 328257 sequences. (Running on oeis4.)