login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174491
Denominator in the coefficient of x^n in exp( Sum_{m>=1} x^m/(m*2^(m^2)) ).
1
1, 2, 32, 512, 262144, 33554432, 137438953472, 562949953421312, 147573952589676412928, 2417851639229258349412352, 2535301200456458802993406410752, 2658455991569831745807614120560689152
OFFSET
0,2
COMMENTS
It is surprising that these terms should consist only of powers of 2.
FORMULA
a(n) = 2^(n^2)*A006519(n) where A006519(n) = highest power of 2 dividing n [conjecture].
EXAMPLE
G(x) = exp( x/2 + x^2/(2*2^4) + x^3/(3*2^9) + x^4/(4*2^16) +...)
G(x) = 1 + 1/2*x + 5/32*x^2 + 19/512*x^3 + 1921/262144*x^4 +...
MATHEMATICA
Table[Denominator@ SeriesCoefficient[Exp[Sum[x^m/(m*2^(m^2)), {m, 1, n}]], {x, 0, n}], {n, 0, 11}] (* Michael De Vlieger, May 12 2017 *)
PROG
(PARI) {a(n) = denominator(polcoeff(exp(sum(m=1, n+1, x^m/(m*2^(m^2))) + x*O(x^n)), n))}
CROSSREFS
Cf. A174490 (numerators).
Sequence in context: A246213 A022028 A013776 * A022019 A010045 A052151
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, Mar 25 2010
EXTENSIONS
Edited by Paul D. Hanna, Mar 29 2010
STATUS
approved