login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174492
a(n) = the smallest k such that k^2+1 = p*A002144(n)^2, p prime of A002144 .
1
18, 70, 540, 800, 1486, 2984, 500, 6760, 776, 4060, 5604, 4030, 5744, 1710, 1744, 46146, 186174, 162886, 62064, 32150, 37416, 16610, 26884, 15006, 130026, 58724
OFFSET
1,1
COMMENTS
A002144 are the primes of the form 4q + 1.
EXAMPLE
a(1) = 18 because 18^2 + 1 = 13*A002144(1) ^2 = 13*5^2 ;
a(2) = 70 because 70^2 + 1 = 29*A002144(2) ^2 = 29*13^2 ;
a(3) = 540 because 540^2 + 1 = 1009*A002144(3) ^2 = 1009*17^2 .
MAPLE
with(numtheory):nn:=400:T:=array(1..nn):k:=1:for x from 1 to nn do: p:=4*x+1:if
type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:for n from 1 to k do: ind:=0:for
m from 1 to 500000 while(ind=0) do:y:=m^2+1:x:= factorset(y) : n1:=nops(x):n2
:=bigomega(y):if n1=2 and n2 = 3 and x[1]=T[n] and ind=0 then ind:=1:printf(`%d,
`, m):else fi:od:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 25 2011
STATUS
approved