login
A059321
Smallest number m such that m^2+1 is divisible by A002144(n)^2 (= squares of primes congruent to 1 mod 4).
9
7, 70, 38, 41, 117, 378, 500, 682, 776, 3861, 4052, 515, 5744, 1710, 6613, 1744, 11018, 13241, 3458, 5099, 1393, 16610, 26884, 15006, 2072, 13637, 31361, 4443, 26508, 7850, 37520, 31152, 39922, 37107, 6072, 4005, 32491, 4030, 43211, 12238
OFFSET
1,1
COMMENTS
a(2) = 70 since A002144(2)=13, 70^2+1 = 4091 = 13^2 * 29 and for no k<70 does 13^2 divide k^2+1. Related to period-1 continued fractions.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Klaus Brockhaus)
PROG
(Python)
from itertools import islice
from sympy import nextprime, sqrt_mod_iter
def A059321_gen(): # generator of terms
p = 1
while (p:=nextprime(p)):
if p&3==1:
yield min(sqrt_mod_iter(-1, p**2))
A059321_list = list(islice(A059321_gen(), 20)) # Chai Wah Wu, May 04 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Marc LeBrun, Jan 26 2001
STATUS
approved