OFFSET
0,3
COMMENTS
a(n) is the n-th term of the main diagonal of iterated partial sums array of n-th powers (starting with the first partial sums).
FORMULA
a(n) ~ c * (r * (2-r)^(2-r) / (1-r)^(1-r))^n * n^n, where r = 0.69176629470097668698335106516328398961170464277337300459988208658267146... is the root of the equation (2-r) = (1-r) * exp(1/r) and c = 0.96374921279011282619632879505754646526289414675402231447188230355850496... - Vaclav Kotesovec, Apr 08 2018
EXAMPLE
For n = 4 we have:
------------------------
0 1 2 3 [4]
------------------------
0, 1, 17, 98, 354, ... A000538 (partial sums of fourth powers)
------------------------
therefore a(4) = 936.
MATHEMATICA
Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2018
STATUS
approved