login
A302353
a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).
1
1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
OFFSET
0,3
COMMENTS
a(n) is the n-th term of the main diagonal of iterated partial sums array of n-th powers (starting with the first partial sums).
FORMULA
a(n) ~ c * (r * (2-r)^(2-r) / (1-r)^(1-r))^n * n^n, where r = 0.69176629470097668698335106516328398961170464277337300459988208658267146... is the root of the equation (2-r) = (1-r) * exp(1/r) and c = 0.96374921279011282619632879505754646526289414675402231447188230355850496... - Vaclav Kotesovec, Apr 08 2018
EXAMPLE
For n = 4 we have:
------------------------
0 1 2 3 [4]
------------------------
0, 1, 17, 98, 354, ... A000538 (partial sums of fourth powers)
0, 1, 18, 116, 470, ... A101089 (partial sums of A000538)
0, 1, 19, 135, 605, ... A101090 (partial sums of A101089)
0, 1, 20, 155, 760, ... A101091 (partial sums of A101090)
0, 1, 21, 176, [936], ... A254681 (partial sums of A101091)
------------------------
therefore a(4) = 936.
MATHEMATICA
Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2018
STATUS
approved