login
A265033
Generating function A(x) satisfies A = 1 + x*A^6 + x^2*A^12.
1
1, 1, 7, 69, 794, 9976, 132657, 1835406, 26149390, 381047316, 5652729938, 85083226696, 1296149152770, 19946485967765, 309623839343190, 4842246124795062, 76223652657288606, 1206767364167388590, 19202880705976262634, 306959907226679676021, 4926844631755358159974
OFFSET
0,3
LINKS
Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.
FORMULA
See page 11 of Cheon et al. 2015 for an explicit formula for a(n).
a(n) ~ 3^(6*n + 1/4) * (5 + sqrt(69))^(n + 1/2) * (39 + sqrt(69))^(6*n + 3/2) / (23^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n+2) * 11^(12*n + 3)). - Vaclav Kotesovec, Nov 20 2017
MAPLE
a:= n-> coeff(series(RootOf(A=1+x*A^6+x^2*A^12, A), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 09 2015
MATHEMATICA
m = 21; A[_] = 0;
Do[A[x_] = 1 + x A[x]^6 + x^2 A[x]^12 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 04 2019 *)
CROSSREFS
Sequence in context: A084774 A025757 A243668 * A226270 A121351 A302353
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 05 2015
EXTENSIONS
More terms from Alois P. Heinz, Dec 09 2015
STATUS
approved