
COMMENTS

The alphabet may be any set of size 4 (GF(4), Z/4Z, etc.) so there is no requirement of linearity.
a(6) is known to be in the range [164179], and a(7) in the range [512614].


LINKS

Table of n, a(n) for n=1..5.
N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs
R. Barden, N. Bushaw, C. Callison, A. Fernandez, B. Harris, I. Holden, C. E. Larson, D. Muncy, C. O'Shea, J. Shive, J. Raines, P. Rana, N. van Cleemput, B. Ward, and N. WilcoxCook, The Graph Brain Project & Big Mathematics, research paper, 2017.
Galina T. Bogdanova, Andries E. Brouwer, Stoian N. Kapralov and Patric R. J. Östergård, ErrorCorrecting Codes over an Alphabet of Four Elements, Designs, Codes and Cryptography 23 (2001) 333342.
Albert No, Nonasymptotic Upper Bounds on Binary Single Deletion Codes via Mixed Integer Linear Programming, Entropy (2019) Vol. 21, 1202.
Pablo San Segundo, Fabio Furini, and Jorge Artieda, A new branchandbound algorithm for the Maximum Weighted Clique Problem, Computers & Operations Research (2019) Vol. 110, 1833.
B. G.Tóth, E. M. T. Hendrix, and L. G. Casado, On monotonicity and search strategies in facebased copositivity detection algorithms, Cent Eur J Oper Res (2021).
Oleksandra Yezerska and Sergiy Butenko, The Maximum Clique and Vertex Coloring, Handbook of Heuristics. Springer, Cham, 2018, 131.
Bogdán Zaválnij, The kClique ProblemUsage, Modeling Expressivity, Serial and Massively Parallel Algorithms, Ph. D. Dissertation, University of Szeged (Hungary, 2020).
