The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265032 Maximal size of an error-correcting code of length n and minimal distance 3 over an alphabet of size 4. 9
1, 1, 4, 16, 64 (list; graph; refs; listen; history; text; internal format)
The alphabet may be any set of size 4 (GF(4), Z/4Z, etc.) so there is no requirement of linearity.
a(6) is known to be in the range [164-179], and a(7) in the range [512-614].
R. Barden, N. Bushaw, C. Callison, A. Fernandez, B. Harris, I. Holden, C. E. Larson, D. Muncy, C. O'Shea, J. Shive, J. Raines, P. Rana, N. van Cleemput, B. Ward, and N. Wilcox-Cook, The Graph Brain Project & Big Mathematics, research paper, 2017.
Galina T. Bogdanova, Andries E. Brouwer, Stoian N. Kapralov and Patric R. J. Östergård, Error-Correcting Codes over an Alphabet of Four Elements, Designs, Codes and Cryptography 23 (2001) 333-342.
Maryam Fazel and Omid Sadeghi, Fast First-Order Methods for Monotone Strongly DR-Submodular Maximization, Proc. SIAM Conf. Appl. Comp. Disc. Algo. (ACDA23, 2023), 169-179. See page 178.
Balázs Király and Sándor Szabó, Splitting Edge Partitions of Graphs, Mathematica Pannonica (2023).
Pablo San Segundo, Fabio Furini, and Jorge Artieda, A new branch-and-bound algorithm for the Maximum Weighted Clique Problem, Computers & Operations Research (2019) Vol. 110, 18-33.
Sándor Szabó, Estimating the fractional chromatic number of a graph, Acta Univ. Sapientiae Informatica (2021) Vol. 13, No. 1, 122-133.
Sándor Szabó and Bogdán Zaválnij, Estimating clique size via discarding subgraphs, Informatica (2021) Vol. 45, 197-204.
B. G.-Tóth, E. M. T. Hendrix, and L. G. Casado, On monotonicity and search strategies in face-based copositivity detection algorithms, Cent Eur J Oper Res (2021).
Oleksandra Yezerska and Sergiy Butenko, The Maximum Clique and Vertex Coloring, Handbook of Heuristics. Springer, Cham, 2018, 1-31.
Bogdán Zaválnij, The k-Clique Problem--Usage, Modeling Expressivity, Serial and Massively Parallel Algorithms, Ph. D. Dissertation, University of Szeged (Hungary, 2020).
Sequence in context: A282310 A022030 A135450 * A162547 A073533 A330689
N. J. A. Sloane, Dec 05 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 02:01 EDT 2023. Contains 362992 sequences. (Running on oeis4.)