login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243668
Number of Sylvester classes of 5-packed words of degree n.
4
1, 1, 7, 69, 793, 9946, 131993, 1822288, 25904165, 376601883, 5573626462, 83692267478, 1271883556731, 19525467196176, 302346907361688, 4716814859429384, 74065892877777885, 1169701519598447641, 18566836447453815317, 296053851068485920563, 4739945317989532651858
OFFSET
0,3
COMMENTS
See Novelli-Thibon (2014) for precise definition.
LINKS
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Eq. (185), p. 47 and Fig. 17.
FORMULA
Novelli-Thibon give an explicit formula in Eq. (182).
From Seiichi Manyama, Jul 26 2020: (Start)
G.f. A(x) satisfies: A(x) = 1 - x * A(x)^5 * (1 - 2 * A(x)).
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(5*n+k+1,n)/(5*n+k+1).
a(n) = ( (-1)^n / (5*n+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k) * binomial(6*n-k,n-k). (End)
a(n) ~ sqrt(27851068 + 7443921*sqrt(14)) * 5^(5*n - 13/2) / (sqrt(7*Pi) * n^(3/2) * 2^(2*(1 + n)) * (108007 - 28854*sqrt(14))^(n - 1/2)). - Vaclav Kotesovec, Jul 31 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(6*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 08 2023
MATHEMATICA
P[n_, m_, x_] := 1/(m n + 1) Sum[Binomial[m n + 1, k] Binomial[(m + 1) n - k, n - k] (1 - x)^k x^(n - k), {k, 0, n}];
a[n_] := P[n, 5, 2];
a /@ Range[20] (* Jean-François Alcover, Jan 28 2020 *)
PROG
(PARI) a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^5*(1-2*A)); polcoeff(A, n); \\ Seiichi Manyama, Jul 26 2020
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(5*n+1, k)*binomial(6*n-k, n-k))/(5*n+1); \\ Seiichi Manyama, Jul 26 2020
CROSSREFS
Column k=5 of A336573.
Cf. A243667.
Sequence in context: A180911 A084774 A025757 * A265033 A226270 A121351
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 2014
EXTENSIONS
More terms from Jean-François Alcover, Jan 28 2020
a(0)=1 prepended by Seiichi Manyama, Jul 25 2020
STATUS
approved