The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059224 a(n) = 2^(n-3)*(n + 3)*(2*n - 3). 2
 18, 70, 224, 648, 1760, 4576, 11520, 28288, 68096, 161280, 376832, 870400, 1990656, 4513792, 10158080, 22708224, 50462720, 111542272, 245366784, 537395200, 1172307968, 2548039680, 5519704064, 11920211968, 25669140480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Harry J. Smith, Table of n, a(n) for n = 3..200 Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA G.f. = 2x^3*(9-19x+10x^2)/(1-2x)^3. - Emeric Deutsch, Jun 27 2009 From G. C. Greubel, Dec 30 2016: (Start) a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). E.g.f.: (1/8)*((9 + 8*x - 10*x^2) - (9 - 10*x - 8*x^2)*exp(2*x)). (End) MAPLE seq(2^(n-3)*(n+3)*(2*n-3), n = 3 .. 32); # Emeric Deutsch, Jun 27 2009] MATHEMATICA Table[2^(n-3)*(n + 3)*(2*n - 3), {n, 3, 50}] (* or *) LinearRecurrence[{6, -12, 8}, {18, 70, 224}, 25] (* G. C. Greubel, Dec 30 2016 *) PROG (PARI) { for (n = 3, 200, write("b059224.txt", n, " ", 2^(n - 3)*(n + 3)*(2*n - 3)); ) } \\ Harry J. Smith, Jun 25 2009 CROSSREFS A diagonal of triangle defined in A059226. Sequence in context: A304061 A214491 A135470 * A174492 A088490 A257693 Adjacent sequences: A059221 A059222 A059223 * A059225 A059226 A059227 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 11:54 EST 2022. Contains 358521 sequences. (Running on oeis4.)