OFFSET
1,1
COMMENTS
Presumably this is also Primes congruent to 1 mod 37 (A216970). - N. J. A. Sloane, Jul 11 2008
Not so. The smallest counterexample is 11471: 11471 == 1 (mod 37), but 43^37 == 2 (mod 11471), therefore this prime is not in the sequence. - Bruno Berselli, Sep 12 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
MATHEMATICA
Select[Prime[Range[PrimePi[12500]]], ! MemberQ[PowerMod[Range[#], 37, #], Mod[2, #]] &] (* T. D. Noe, Sep 12 2012 *)
ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 19 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(13000) | forall{x: x in ResidueClassRing(p) | x^37 ne 2}]; // Bruno Berselli, Sep 12 2012
(PARI)
N=10^5; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (! ok(p, 2, 37), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 19 2001
STATUS
approved