login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174494
a(n) = coefficient of x^n/(n-1)! in the 4-fold iteration of x*exp(x).
4
1, 4, 28, 274, 3400, 50734, 880312, 17357736, 382463824, 9298086490, 246914949376, 7104423326356, 220000621675912, 7290852811359654, 257332393857067720, 9632914084301343304, 381050245422453157408
OFFSET
1,2
FORMULA
O.g.f.: Sum_{n>=1} A174493(n)*x^n/(1-n*x)^n, where A174493(n) = [x^n/(n-1)! ] E(E(E(x))) and E(x) = x*exp(x).
a(n)=Sum_{k=0..n-1, j=0..n-1-k, i=0..n-1-k-j} C(n-1,k)*C(n-1-k,j)*C(n-1-k-j,i)*(k+1)^j*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i).
E.g.f. equals the 2-fold iteration of the e.g.f. of A080108.
EXAMPLE
E.g.f.: x + 4*x^2 + 28*x^3/2! + 274*x^4/3! + 3400*x^5/4! +...
PROG
(PARI) {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1, 4, F=subst(F, x, xEx)); (n-1)!*polcoeff(F, n)}
(PARI) {a(n)=sum(k=0, n-1, binomial(n-1, k)*sum(j=0, n-1-k, binomial(n-1-k, j)*(k+1)^j*sum(i=0, n-1-k-j, binomial(n-1-k-j, i)*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i))))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 17 2010
STATUS
approved