login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080108
a(n) = Sum_{k=1..n} k^(n-k)*binomial(n-1,k-1).
33
1, 2, 6, 23, 104, 537, 3100, 19693, 136064, 1013345, 8076644, 68486013, 614797936, 5818490641, 57846681092, 602259154853, 6548439927680, 74180742421185, 873588590481988, 10674437936521069, 135097459659312176
OFFSET
1,2
COMMENTS
Row sums of triangle A154372. Example: a(3)=1+12+9+1=23. From A152818. - Paul Curtz, Jan 08 2009
Number of pointed set partitions of a pointed set k[1...k...n] with a prescribed point k. - Gus Wiseman, Sep 27 2015
With offset 0, a(n) is the number of partial functions (A000169) from [n]->[n] such that every element in the domain of definition is mapped to a fixed point. This implies a(n) is the number of idempotent partial functions Cf. A121337. - Geoffrey Critzer, Aug 07 2016
LINKS
FORMULA
G.f.: Sum_{k>0} x^k/(1-k*x)^k.
E.g.f. (for offset 0): exp(x*(1+exp(x))). - Vladeta Jovovic, Aug 25 2003
a(n) = A185298(n)/n.
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 537*x^6 + 3100*x^7 + 19693*x^8 + ...
The a(4) = 23 pointed set partitions of 1[1 2 3 4] are 1[1[1 2 3 4]], 1[1[1] 2[2 3 4]], 1[1[1] 3[2 3 4]], 1[1[1] 4[2 3 4]], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1[1 2 3] 4[4]], 1[1[1 2 4] 3[3]], 1[1[1 3 4] 2[2]], 1[1[1] 2[2] 3[3 4]], 1[1[1] 2[2] 4[3 4]], 1[1[1] 2[2 3] 4[4]], 1[1[1] 2[2 4] 3[3]], 1[1[1] 3[3] 4[2 4]], 1[1[1] 3[2 3] 4[4]], 1[1[1 2] 3[3] 4[4]], 1[1[1 3] 2[2] 4[4]], 1[1[1 4] 2[2] 3[3]], 1[1[1] 2[2] 3[3] 4[4]].
MATHEMATICA
Table[Sum[k^(n-k) Binomial[n-1, k-1], {k, n}], {n, 30}] (* Harvey P. Dale, Aug 19 2012 *)
Table[SeriesCoefficient[Sum[x^k/(1-k*x)^k, {k, 0, n}], {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 06 2014 *)
CoefficientList[Series[E^(x*(1+E^x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 06 2014 *)
PROG
(PARI) a(n)=sum(k=1, n, k^(n-k)*binomial(n-1, k-1)) \\ Anders Hellström, Sep 27 2015
(Magma) [(1/n)*(&+[Binomial(n, k)*k^(n-k+1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 22 2023
(SageMath)
def A080108(n): return (1/n)*sum(binomial(n, k)*k^(n-k+1) for k in range(n+1))
[A080108(n) for n in range(1, 31)] # G. C. Greubel, Jan 22 2023
CROSSREFS
First column of array A098697.
Sequence in context: A137546 A137547 A137548 * A113227 A200406 A165489
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 15 2003
STATUS
approved