OFFSET
0,2
COMMENTS
In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences, with the first column the inverse binomial transform of the start sequence.
LINKS
D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
FORMULA
Recurrence: T(0, n) = A000248(n), T(k, n) = T(k-1, n) + T(k-1, n+1).
EXAMPLE
1,1,3,10,41,196,1057,
2,4,13,51,237,1253,7379,
6,17,64,288,1490,8632,55094,
23,81,352,1778,10122,63726,437810,
104,433,2130,11900,73848,501536,3687056,
MATHEMATICA
a248[0] = 1; a248[n_] := Sum[Binomial[n, k]*(n - k)^k, {k, 0, n}];
T[0, n_] := T[0, n] = a248[n];
T[k_, n_] := T[k, n] = T[k - 1, n] + T[k - 1, n + 1];
Table[T[k - n, n], {k, 0, 9}, {n, 0, k}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Sep 23 2004
STATUS
approved