login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098699
Anti-derivative of n: or the first occurrence of n in A003415, or zero if impossible.
9
1, 2, 0, 0, 4, 6, 9, 10, 15, 14, 21, 0, 8, 22, 33, 26, 12, 0, 65, 34, 51, 18, 57, 0, 20, 46, 69, 27, 115, 0, 161, 30, 16, 62, 93, 0, 155, 0, 217, 45, 111, 42, 185, 82, 24, 50, 129, 0, 44, 94, 141, 63, 235, 0, 329, 75, 52, 0, 265, 70, 36, 66, 177, 122, 183, 0, 305, 0, 40, 134
OFFSET
0,2
COMMENTS
With Goldbach's conjecture, any even integer n = 2k > 2 can be written as sum of two primes, n = p + q, and therefore admits N = pq as (not necessarily smallest) anti-derivative, so a(2k) > 0, and a(2k) <= pq <= k^2. [Remark inspired by L. Polidori.] - M. F. Hasler, Apr 09 2015
a(n) <= n^2/4 for n > 1. This is because if A003415(x) = n > 1, x = a*b for some a,b > 1, and then n = A003415(x) = a*A003415(b) + A003415(a)*b >= a + x/a >= 2*sqrt(x), i.e. x <= (n/2)^2. - Robert Israel, May 29 2023
FORMULA
a(n) = n for { 4, 27, 3125, 823543, ... } = { p^p; p prime } = A051674.
MAPLE
ader:= proc(n) local t;
n * add(t[2]/t[1], t = ifactors(n)[2])
end proc:
N:= 100: # for a(0) .. a(N)
V:= Array(0..N): count:= 0:
for x from 1 to N^2/4 while count < 100 do
v:= ader(x);
if v > 0 and v <= 100 and V[v] = 0 then
count:= count+1; V[v]:= x;
fi;
od:
convert(V, list); # Robert Israel, May 29 2023
MATHEMATICA
a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[0, {70}]; b[[1]] = 1; Do[c = a[n]; If[c < 70 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^3}]; b
PROG
(PARI) A098699(n)=for(k=1, (n\2)^2+2, A003415(k)==n&&return(k)) \\ M. F. Hasler, Apr 09 2015
(Python)
from sympy import factorint
def A098699(n):
if n < 2:
return n+1
for m in range(1, (n**2>>2)+1):
if sum((m*e//p for p, e in factorint(m).items())) == n:
return m
return 0 # Chai Wah Wu, Sep 12 2022
CROSSREFS
Cf. A003415, A051674, zeros in A098700.
Sequence in context: A333706 A056676 A352450 * A021837 A236934 A155719
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 21 2004
STATUS
approved