login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098694
Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
19
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
OFFSET
0,2
COMMENTS
Hankel transform of double factorial numbers A001147. - Paul Barry, Jan 28 2008
Hankel transform of A112934(n+1). - Paul Barry, Dec 04 2009
LINKS
C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
FORMULA
a(n) = Product_{k=0..n} (2*(k+1)*(2*k+1))^(n-k). - Paul Barry, Jan 28 2008
a(n) = A000178(n)*A057863(n)*A006125(n+1) = A121835(n)*A006125(n+1). - Paul Barry, Jan 28 2008
G.f.: G(0)/(2*x)-1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)!/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) ~ 2^(n^2+2*n+17/24) * n^(n^2+3*n/2+11/24) * Pi^((n+1)/2) / (A^(1/2) * exp(3*n^2/2+3*n/2-1/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = A^(3/2)*2^(n^2+n-1/24)*Pi^(-n/2-1/4)*G(n+3/2)*G(n+2)/exp(1/8), where G(n) is the Barnes G-function and A is the Glaisher-Kinkelin constant. - Ilya Gutkovskiy, Dec 11 2016
a(n) = A000178(2*n + 1) / A168467(n). - Vaclav Kotesovec, Oct 28 2017
For n > 0, a(n) = 2^((n+1)/2) * n * sqrt(BarnesG(2*n)*Gamma(n)) * Gamma(2*n). - Vaclav Kotesovec, Nov 27 2024
MATHEMATICA
Table[Product[(2k)!, {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 13 2014 *)
PROG
(PARI) a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
(Magma) [&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
(Python)
from math import prod
def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1, n+1))<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 22 2004
STATUS
approved