login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k^(n-k)*binomial(n-1,k-1).
33

%I #52 Nov 26 2024 03:35:06

%S 1,2,6,23,104,537,3100,19693,136064,1013345,8076644,68486013,

%T 614797936,5818490641,57846681092,602259154853,6548439927680,

%U 74180742421185,873588590481988,10674437936521069,135097459659312176

%N a(n) = Sum_{k=1..n} k^(n-k)*binomial(n-1,k-1).

%C Row sums of triangle A154372. Example: a(3)=1+12+9+1=23. From A152818. - _Paul Curtz_, Jan 08 2009

%C Number of pointed set partitions of a pointed set k[1...k...n] with a prescribed point k. - _Gus Wiseman_, Sep 27 2015

%C With offset 0, a(n) is the number of partial functions (A000169) from [n]->[n] such that every element in the domain of definition is mapped to a fixed point. This implies a(n) is the number of idempotent partial functions Cf. A121337. - _Geoffrey Critzer_, Aug 07 2016

%H Vincenzo Librandi, <a href="/A080108/b080108.txt">Table of n, a(n) for n = 1..200</a>

%F G.f.: Sum_{k>0} x^k/(1-k*x)^k.

%F E.g.f. (for offset 0): exp(x*(1+exp(x))). - _Vladeta Jovovic_, Aug 25 2003

%F a(n) = A185298(n)/n.

%e G.f. = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 537*x^6 + 3100*x^7 + 19693*x^8 + ...

%e The a(4) = 23 pointed set partitions of 1[1 2 3 4] are 1[1[1 2 3 4]], 1[1[1] 2[2 3 4]], 1[1[1] 3[2 3 4]], 1[1[1] 4[2 3 4]], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1[1 2 3] 4[4]], 1[1[1 2 4] 3[3]], 1[1[1 3 4] 2[2]], 1[1[1] 2[2] 3[3 4]], 1[1[1] 2[2] 4[3 4]], 1[1[1] 2[2 3] 4[4]], 1[1[1] 2[2 4] 3[3]], 1[1[1] 3[3] 4[2 4]], 1[1[1] 3[2 3] 4[4]], 1[1[1 2] 3[3] 4[4]], 1[1[1 3] 2[2] 4[4]], 1[1[1 4] 2[2] 3[3]], 1[1[1] 2[2] 3[3] 4[4]].

%t Table[Sum[k^(n-k) Binomial[n-1,k-1],{k,n}],{n,30}] (* _Harvey P. Dale_, Aug 19 2012 *)

%t Table[SeriesCoefficient[Sum[x^k/(1-k*x)^k,{k,0,n}],{x,0,n}], {n,1,20}] (* _Vaclav Kotesovec_, Aug 06 2014 *)

%t CoefficientList[Series[E^(x*(1+E^x)), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Aug 06 2014 *)

%o (PARI) a(n)=sum(k=1,n, k^(n-k)*binomial(n-1,k-1)) \\ _Anders Hellström_, Sep 27 2015

%o (Magma) [(1/n)*(&+[Binomial(n,k)*k^(n-k+1): k in [0..n]]): n in [1..30]]; // _G. C. Greubel_, Jan 22 2023

%o (SageMath)

%o def A080108(n): return (1/n)*sum(binomial(n,k)*k^(n-k+1) for k in range(n+1))

%o [A080108(n) for n in range(1,31)] # _G. C. Greubel_, Jan 22 2023

%Y First column of array A098697.

%Y Cf. A152818, A185298, A262671.

%K nonn

%O 1,2

%A _Vladeta Jovovic_, Mar 15 2003