The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080107 Number of fixed points of permutation of SetPartitions under {1,2,...,n}->{n,n-1,...,1}. Number of symmetric arrangements of non-attacking rooks on upper half of n X n chessboard. 18
 1, 1, 2, 3, 7, 12, 31, 59, 164, 339, 999, 2210, 6841, 16033, 51790, 127643, 428131, 1103372, 3827967, 10269643, 36738144, 102225363, 376118747, 1082190554, 4086419601, 12126858113, 46910207114, 143268057587, 566845074703, 1778283994284, 7186474088735 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Even-numbered terms a(2k) are A002872: 2,7,31,164,999 ("Sorting numbers"); odd-numbered terms are its binomial transform, A080337. The symmetrical set partitions of {-n,...,-1,0,1,...,n} can be classified by the partition containing 0. Thus we get the sum over k of {n choose k} times the number of symmetrical set partitions of 2n-2k elements. - Don Knuth, Nov 23 2003 Number of partitions of n numbers that are symmetrical and cannot be nested (i.e., include a pattern of the form abab). - Douglas Boffey, May 21 2015 Number of achiral color patterns in a row or loop of length n. Two color patterns are equivalent if the colors are permuted. - Robert A. Russell, Apr 23 2018 Also the number of self-complementary set partitions of {1, ..., n}. The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}. - Gus Wiseman, Feb 13 2019 REFERENCES D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 765). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005. S. V. Pemmaraju and S. S. Skiena, The New Combinatorica, 2001. Frank Ruskey, Set Partitions FORMULA Knuth gives recurrences and generating functions. a(n) = Sum_{k=0..t(n)} (-1)^k*A125810(n,k) where A125810 is a triangle of coefficients for a q-analog of the Bell numbers and t(n)=A125811(n)-1. - Paul D. Hanna, Jan 19 2009 From Robert A. Russell, Apr 23 2018: (Start) a(n) = Sum_{k=0..n} Ach(n,k) where   Ach(n,k) = [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) + [n<2]*[n==k]*[n>=0]. a(n) = 2*A103293(n+1) - A000110(n). (End) a(n) = [n==0 mod 2]*Sum_{k=0..n/2} Stirling2(n/2, k)*A005425(k) + [n==1 mod 2] * Sum_{k=1..(n+1)/2} Stirling2((n+1)/2, k) * A005425(k-1). (from Knuth reference) a(n) = 2*A084708(n) - A084423(n). - Robert A. Russell, Apr 27 2018 EXAMPLE Of the set partitions of 4, the following 7 are invariant under 1->4, 2->3, 3->2, 4->1: {{1,2,3,4}}, {{1,2},{3,4}}, {{1,4},{2,3}}, {{1,3},{2,4}}, {{1},{2,3},{4}}, {{1,4},{2},{3}}, {{1},{2},{3},4}}, so a=7. For a(4)=7, the row patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD (same as previous example).  The loop patterns are AAAA, AAAB, AABB, AABC, ABAB, ABAC, and ABCD. - Robert A. Russell, Apr 23 2018 From Gus Wiseman, Feb 13 2019: (Start) The a(1) = 1 through a(5) = 12 self-complementary set partitions:   {{1}}  {{12}}    {{123}}      {{1234}}        {{12345}}          {{1}{2}}  {{13}{2}}    {{12}{34}}      {{1245}{3}}                    {{1}{2}{3}}  {{13}{24}}      {{135}{24}}                                 {{14}{23}}      {{15}{234}}                                 {{1}{23}{4}}    {{1}{234}{5}}                                 {{14}{2}{3}}    {{12}{3}{45}}                                 {{1}{2}{3}{4}}  {{135}{2}{4}}                                                 {{14}{25}{3}}                                                 {{15}{24}{3}}                                                 {{1}{24}{3}{5}}                                                 {{15}{2}{3}{4}}                                                 {{1}{2}{3}{4}{5}} (End) MATHEMATICA < Range[n, 1, -1]]; t= 1 + RankSetPartition /@ t; t= ToCycles[t]; t= Cases[t, {_Integer}]; Length[t], {n, 7}] (* second program: *) QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[cc = CoefficientList[QB[n, q], q]; cc.Table[(-1)^(k+1), {k, 1, Length[cc]}], {n, 0, 30}] (* Jean-François Alcover, Feb 29 2016, after Paul D. Hanna *) (* Ach[n, k] is the number of achiral color patterns for a row or loop of n   colors containing exactly k different colors *) Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0],   k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] Table[Sum[Ach[n, k], {k, 0, n}], {n, 0, 30}] (* Robert A. Russell, Apr 23 2018 *) x[n_] := x[n] = If[n < 2, n+1, 2x[n-1] + (n-1)x[n-2]]; (* A005425 *) Table[Sum[StirlingS2[Ceiling[n/2], k] x[k-Mod[n, 2]], {k, 0, Ceiling[n/2]}],   {n, 0, 30}] (* Robert A. Russell, Apr 27 2018, after Knuth reference *) CROSSREFS Cf. A002872, A080337. Cf. A125810. - Paul D. Hanna, Jan 19 2009 Cf. A000126, A000296, A124323, A169985, A324012, A324013, A324014. Sequence in context: A299295 A305752 A034786 * A056156 A112837 A056355 Adjacent sequences:  A080104 A080105 A080106 * A080108 A080109 A080110 KEYWORD nonn AUTHOR Wouter Meeussen, Mar 15 2003 EXTENSIONS Offset set to 0 by Alois P. Heinz, May 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)