login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125811
Number of coefficients in the n-th q-Bell number as a polynomial in q.
7
1, 1, 1, 2, 3, 5, 8, 11, 15, 20, 26, 32, 39, 47, 56, 66, 76, 87, 99, 112, 126, 141, 156, 172, 189, 207, 226, 246, 267, 288, 310, 333, 357, 382, 408, 435, 463, 491, 520, 550, 581, 613, 646, 680, 715, 751, 787, 824, 862, 901, 941, 982, 1024, 1067, 1111, 1156, 1201
OFFSET
0,4
LINKS
Arvind Ayyer and Naren Sundaravaradan, An area-bounce exchanging bijection on a large subset of Dyck paths, arXiv:2401.14668 [math.CO], 2024. See p. 20.
FORMULA
a(n) = A023536(n-2) + 1.
a(n) = n*(n+1)/2 - 4 - Sum_{k=2..n-2} floor(1/2 + sqrt(2*k+4)) for n>2. [Due to a formula by Jan Hagberg in A023536]
EXAMPLE
This sequence gives the number of terms in rows of A125810.
Row g.f.s B_q(n) of A125810 are polynomials in q generated by:
B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1
where the triangle of q-binomial coefficients C_q(n,k) begins:
1;
1, 1;
1, 1 + q, 1;
1, 1 + q + q^2, 1 + q + q^2, 1;
1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1;
The initial q-Bell coefficients in B_q(n) are:
B_q(0) = 1; B_q(1) = 1; B_q(2) = 2;
B_q(3) = 4 + q;
B_q(4) = 8 + 4*q + 3*q^2;
B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4;
B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7.
MAPLE
Cq:= proc(n, k) local j; if n<k or k<0 then 0 elif n=0 or k=0 then 1 else mul(1-q^j, j=n-k+1..n)/mul(1-q^j, j=1..k) fi end: Bq:= proc(n) option remember; local k; if n=0 then 1 else simplify(add(Bq(k) * Cq(n-1, k), k=0..n-1)) fi end: a:= n-> nops(Bq(n)): seq(a(n), n=0..60); # Alois P. Heinz, Aug 04 2009
MATHEMATICA
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; a[n_] := CoefficientList[QB[n, q], q] // Length; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Feb 29 2016 *)
PROG
(PARI) /* q-Binomial coefficients: */
C_q(n, k)=if(n<k || k<0, 0, if(n==0 || k==0, 1, prod(j=n-k+1, n, 1-q^j)/prod(j=1, k, 1-q^j)))
/* q-Bell numbers = eigensequence of q-binomial triangle: */
B_q(n)=if(n==0, 1, sum(k=0, n-1, B_q(k)*C_q(n-1, k)))
/* Number of coefficients in B_q(n) as a polynomial in q: */
a(n)=#Vec(B_q(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2006
EXTENSIONS
More terms from Alois P. Heinz, Aug 04 2009
STATUS
approved