login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125812
q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.
6
1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) for n>0, with a(0)=1.
EXAMPLE
The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
PROG
(PARI) /* q-Binomial coefficients: */ {C_q(n, k)=if(n<k || k<0, 0, if(n==0 || k==0, 1, prod(j=n-k+1, n, 1-q^j)/prod(j=1, k, 1-q^j)))} /* q-Bell numbers = eigensequence of q-binomial triangle: */ {B_q(n)=if(n==0, 1, sum(k=0, n-1, B_q(k)*C_q(n-1, k)))} /* Eigensequence at q=2: */ {a(n)=subst(B_q(n), q, 2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2006
STATUS
approved