login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125810
Triangle of q-Bell number coefficients, read by rows that form polynomials in q, giving the eigensequence for the triangle of q-binomial coefficients.
8
1, 1, 2, 4, 1, 8, 4, 3, 16, 12, 13, 8, 3, 32, 32, 42, 38, 33, 15, 10, 1, 64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4, 128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6, 256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4
OFFSET
0,3
COMMENTS
Row n evaluated at sample values of q are as follows:
R_n(q=1) = A000110(n) (Bell numbers);
R_n(q=-1) = A080107(n) (fixed points of permutation of SetPartitions);
R_n(q=2) = A125812; R_n(q=3) = A125813; R_n(q=4) = A125814; R_n(q=5) = A125815.
T(n,k) is the number of set partitions of [n] having exactly k inversions. T(5,4)=3: 145|23, 145|2|3, 15|24|3; T(6,6) = 10: 1456|23, 156|234, 156|23|4, 1456|2|3, 146|25|3, 16|245|3, 156|2|34, 16|25|34, 156|2|3|4, 16|25|3|4. - Alois P. Heinz, Apr 03 2016
LINKS
Arvind Ayyer and Naren Sundaravaradan, An area-bounce exchanging bijection on a large subset of Dyck paths, arXiv:2401.14668 [math.CO], 2024. See p. 20.
FORMULA
T(n,0) = 2^(n-1) for n>0. G.f. of row n is a polynomial in q, B_q(n), that is generated by the recurrence: B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0, with B_q(0)=1. The q-binomial coefficient (also called Gaussian binomial coefficient) is given by: C_q(n,k) = [Product_{i=n-k+1..n} (1-q^i)]/[Product_{j=1..k} (1-q^j)].
Sum_{k>0} k * T(n,k) = A264082(n). - Alois P. Heinz, Apr 03 2016
EXAMPLE
Row g.f.s B_q(n) are polynomials in q generated by:
B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1
where the triangle of q-binomial coefficients C_q(n,k) begins:
1;
1, 1;
1, 1 + q, 1;
1, 1 + q + q^2, 1 + q + q^2, 1;
1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1;
The initial q-Bell coefficients in B_q(n) are:
B_q(0) = 1; B_q(1) = 1; B_q(2) = 2;
B_q(3) = 4 + q;
B_q(4) = 8 + 4*q + 3*q^2;
B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4;
B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7.
Number of terms in row n is given by A125811, which starts:
1,1,1,2,3,5,8,11,15,20,26,32,39,47,56,66,76,87,99,112,126,141,156,...
Triangle begins:
1;
1;
2;
4, 1;
8, 4, 3;
16, 12, 13, 8, 3;
32, 32, 42, 38, 33, 15, 10, 1;
64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4;
128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6;
256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4;
512, 1024, 2016, 3136, 4626, 6020, 7642, 8849, 9963, 10423, 10587, 10066, 9355, 8103, 6828, 5380, 4101, 2882, 1964, 1194, 708, 353, 167, 57, 18, 1; ...
MATHEMATICA
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[ CoefficientList[QB[n, q], q], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 29 2016 *)
PROG
(PARI) /* q-Binomial coefficients: */
{C_q(n, k) = if(n<k||k<0, 0, if(n==0||k==0, 1, prod(j=n-k+1, n, 1-q^j)/prod(j=1, k, 1-q^j)))}
/* q-Bell numbers = eigensequence of q-binomial triangle: */
{B_q(n) = if(n==0, 1, sum(k=0, n-1, B_q(k)*C_q(n-1, k)))}
/* Coefficients in row n: */
{T(n, k) = polcoeff(B_q(n), k, q)}
/* Print triangle rows: */
for(n=0, 10, for(k=0, #Vec(B_q(n))-1, print1(T(n, k), ", ")); print(" "))
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Dec 10 2006
STATUS
approved