login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356549
a(n) is the number of divisors of 10^n whose first digit is 1.
2
1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 52, 60, 69, 78, 88, 99, 110, 122, 135, 148, 161, 175, 190, 205, 221, 238, 255, 273, 292, 311, 330, 350, 371, 392, 414, 437, 460, 484, 509, 534, 559, 585, 612, 639, 667, 696, 725, 755, 786, 817, 848, 880, 913, 946, 980, 1015, 1050, 1086
OFFSET
0,2
LINKS
FORMULA
a(n) = A357299(A011557(n)).
EXAMPLE
The divisors of 1000 with initial digit 1 are: 1, 10, 100, 125 and 1000, so a(3)=5.
MAPLE
a:= n-> add(`if`((""||d)[1]="1", 1, 0), d=numtheory[divisors](10^n)):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 23 2022
MATHEMATICA
a[n_] := DivisorSum[10^n, 1 &, IntegerDigits[#][[1]] == 1 &]; Array[a, 60, 0] (* Amiram Eldar, Sep 23 2022 *)
PROG
(PARI) a(n) = sumdiv(10^n, d, digits(d)[1] == 1);
(Python)
from sympy import divisors
def a(n): return sum(1 for d in divisors(10**n, generator=True) if str(d)[0]=="1")
print([a(n) for n in range(60)]) # Michael S. Branicky, Sep 23 2022
(Python)
def A356549(n): return n+1+sum(n-m+1 for m in range(1, n+2) for d in (2, 5) if str(d**m).startswith('1')) # Chai Wah Wu, Sep 23 2022
CROSSREFS
Sequence in context: A062485 A175143 A137179 * A096777 A125811 A281706
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Sep 23 2022
STATUS
approved