|
|
A175143
|
|
a(1)=1. a(n) = the smallest integer > a(n-1) such that d(a(n))+d(a(n)+1) > d(a(n-1))+d(a(n-1)+1), where d(m) = the number of divisors of m.
|
|
4
|
|
|
1, 2, 3, 5, 8, 11, 15, 20, 24, 35, 59, 80, 84, 119, 224, 239, 335, 359, 360, 480, 539, 719, 720, 840, 1079, 1259, 1260, 1679, 2519, 4199, 5039, 5040, 6720, 7559, 9360, 10079, 10080, 15119, 20159, 25199, 25200, 27719, 32759, 43680, 50399, 55439, 75599
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Those n where A092405(n) sets records.
Nicolas proved that: (1) Except for a finite number of terms, if k is in this sequence either k or k+1 is a largely composite number (A067128). (2) Except for a finite number of terms if k is a highly composite number (A002182) then k-1 is a term of this sequence. Apparently the only exceptions of (1) are 15, 80, 224, 6720, and 9360, and the only exceptions of (2) are 1, 24, 48, 180, 840, and 45360. - Amiram Eldar, Aug 24 2019
|
|
LINKS
|
|
|
MAPLE
|
A092405 := proc(n) numtheory[tau](n)+numtheory[tau](n+1) ; end proc: read("transforms") ; a092405 :=[seq(A092405(n), n=1..90000)] ; RECORDS(a092405)[2] ; # R. J. Mathar, Mar 05 2010
|
|
MATHEMATICA
|
d1 = 1; dm = 0; s = {}; Do[d2 = DivisorSigma[0, n]; d = d1 + d2; If[d > dm, dm = d; AppendTo[s, n - 1]]; d1 = d2, {n, 2, 80000}]; s (* Amiram Eldar, Aug 24 2019 *)
smi[n_]:=Module[{k=n+1, ds=DivisorSigma[0, n]+DivisorSigma[0, n+1]}, While[ DivisorSigma[ 0, k]+DivisorSigma[0, k+1]<=ds, k++]; k]; NestList[smi, 1, 50] (* Harvey P. Dale, Apr 25 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|