OFFSET
1,2
COMMENTS
This sequence is a subsequence of A034287; are they identical? They match for m up to 1500000.
Identical to A034287 for the 105834 terms less than 10^150.
Every subsequence of terms, having the fixed greatest prime divisor prime(k), k=1,2,..., is finite. For a proof see A273015. The list of these subsequences begins {2,4,8}, {3,6,12,18,24,36,48,72,96,108}, ... - Vladimir Shevelev, May 13 2016
By a result of Erdős (1944), a(n+1) <= 2*a(n): see Erdős link. - David A. Corneth, May 20, 2016
It appears that if n > 13, then a(n) = A363658(n). - Simon Jensen, Aug 31 2023
Out of the first 10000 terms of this sequence, 1766 are adjacent to a prime. - Dmitry Kamenetsky, Jul 02 2024
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
P. Erdős, On Highly composite numbers, J. London Math. Soc. 19 (1944), 130--133 MR7,145d; Zentralblatt 61,79.
Jean-Louis Nicolas, Répartition des nombres largement composés, Acta Arithmetica 34 (1979), 379-390.
J.-L. Nicolas and G. Robin, Highly Composite Numbers by Srinivasa Ramanujan, The Ramanujan Journal, Vol. 1(2), pp. 119-153, Kluwer Academics Pub.
Vladimir Shevelev, On Erdős constant, arXiv:1605.08884 [math.NT], 2016.
EXAMPLE
8 is a term as d(8) = 4 and d(k) <= 4 for k = 1,...,7.
MAPLE
isA067128 := proc(n)
local nd, k ;
nd := numtheory[tau](n) ;
for k from 1 to n-1 do
if numtheory[tau](k) > nd then
return false ;
end if;
end do:
true ;
end proc:
A067128 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA067128(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A067128(n), n=1..60) ; # R. J. Mathar, Apr 15 2024
MATHEMATICA
For[n=1; max=0, True, n++, If[(d=DivisorSigma[0, n])>=max, Print[n]; max=d]]
NestList[Function[last,
NestWhile[# + 1 &, last + 1,
DivisorSigma[0, #] < DivisorSigma[0, last] &]], 1, 70] (* Steven Lu, Nov 28 2022 *)
PROG
(PARI) is(n) = my(nd=numdiv(n)); for(k=1, n-1, if(numdiv(k) > nd, return(0))); return(1) \\ Felix Fröhlich, May 22 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jan 09 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 15 2002 and by T. D. Noe, Nov 07 2002
STATUS
approved