login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124323 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n). 17
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums are the Bell numbers (A000110). T(n,0)=A000296(n). T(n,k) = binomial(n,k)*T(n-k,0). Sum(k*T(n,k),k=0..n) = A052889(n) = n*B(n-1), where B(q) are the Bell numbers (A000110).

Exponential Riordan array [exp(exp(x)-1-x),x]. - Paul Barry, Apr 23 2009

Sum_{k=0..n} T(n,k)*2^k = A000110(n+1) is the number of binary relations on an n-set that are both symmetric and transitive. - Geoffrey Critzer, Jul 25 2014

Also the number of set partitions of {1, ..., n} with k cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). Unlike A250104, we count {{1}} as having 1 cyclical adjacency. - Gus Wiseman, Feb 13 2019

REFERENCES

T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.

FORMULA

T(n,k) = binomial(n,k)*[(-1)^(n-k)+sum((-1)^(j-1)*B(n-k-j), j=1..n-k)], where B(q) are the Bell numbers (A000110).

E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)*z)).

G.f.: 1/(1-xy-x^2/(1-xy-x-2x^2/(1-xy-2x-3x^2/(1-xy-3x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009

EXAMPLE

T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).

Triangle starts:

     1

     0    1

     1    0    1

     1    3    0    1

     4    4    6    0    1

    11   20   10   10    0    1

    41   66   60   20   15    0    1

   162  287  231  140   35   21    0    1

   715 1296 1148  616  280   56   28    0    1

  3425 6435 5832 3444 1386  504   84   36    0    1

From Gus Wiseman, Feb 13 2019: (Start)

Row n = 5 counts the following set partitions by number of singletons:

  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}

  {{12}{34}}  {{123}{4}}  {{1}{23}{4}}

  {{13}{24}}  {{124}{3}}  {{12}{3}{4}}

  {{14}{23}}  {{134}{2}}  {{1}{24}{3}}

                          {{13}{2}{4}}

                          {{14}{2}{3}}

... and the following set partitions by number of cyclical adjacencies:

  {{13}{24}}      {{1}{2}{34}}  {{1}{234}}  {{1234}}

  {{1}{24}{3}}    {{1}{23}{4}}  {{12}{34}}

  {{13}{2}{4}}    {{12}{3}{4}}  {{123}{4}}

  {{1}{2}{3}{4}}  {{14}{2}{3}}  {{124}{3}}

                                {{134}{2}}

                                {{14}{23}}

(End)

From Paul Barry, Apr 23 2009: (Start)

Production matrix is

0, 1,

1, 0, 1,

1, 2, 0, 1,

1, 3, 3, 0, 1,

1, 4, 6, 4, 0, 1,

1, 5, 10, 10, 5, 0, 1,

1, 6, 15, 20, 15, 6, 0, 1,

1, 7, 21, 35, 35, 21, 7, 0, 1,

1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)

MAPLE

G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G, z=0, 14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser, z, n)) od: for n from 0 to 11 do seq(coeff(P[n], t, k), k=0..n) od; # yields sequence in triangular form

# Program from R. J. Mathar, Jan 22 2015:

A124323 := proc(n, k)

    binomial(n, k)*A000296(n-k) ;

end proc:

MATHEMATICA

Flatten[CoefficientList[Range[0, 10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0, 10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

Table[Length[Select[sps[Range[n]], Count[#, {_}]==k&]], {n, 0, 9}, {k, 0, n}] (* Gus Wiseman, Feb 13 2019 *)

CROSSREFS

Cf. A000110, A052889, A124324.

A250104 is an essentially identical triangle, differing only in row 1.

For columns see A000296, A250105, A250106, A250107.

Cf. A000126, A001610, A032032, A052841, A066982, A080107, A169985, A187784, A324011, A324014, A324015.

Sequence in context: A039727 A137176 A143949 * A250104 A220421 A106683

Adjacent sequences:  A124320 A124321 A124322 * A124324 A124325 A124326

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Oct 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 03:27 EST 2019. Contains 329872 sequences. (Running on oeis4.)