login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128318
G.f.: A(x) = 1+x*(1+2x*(1+3x*(...(1+n*x*(...)^2)^2...)^2)^2)^2.
16
1, 1, 4, 28, 276, 3480, 53232, 955524, 19672320, 456803328, 11810032896, 336463895808, 10473959755008, 353739038360832, 12883270796310528, 503352328766459904, 21001144899441162240, 931963581151516477440, 43832663421577452887040, 2178029362561822117094400, 114014865901176834809333760
OFFSET
0,3
LINKS
Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..385 (terms 0..200 from Paul D. Hanna)
FORMULA
Conjecture: a(n) ~ n! * (8/3)^n / sqrt(n). - Vaclav Kotesovec, Mar 19 2016
EXAMPLE
G.f.: A(x) = 1 + x*B(x)^2; B(x) = 1 + 2*x*C(x)^2; C(x) = 1 + 3*x*D(x)^2; D(x) = 1 + 4*x*E(x)^2; E(x) = 1 + 5*x*F(x)^2; F(x) = 1 + 6*x*G(x)^2; ...
where the respective sequences begin:
A=[1,1,4,28,276,3480,53232,955524,19672320,...];
B=[1,2,12,114,1440,22368,409248,8585088,202733760,...];
C=[1,3,24,288,4440,82080,1752000,42178800,1127335680,...];
D=[1,4,40,580,10560,226560,5532960,150570240,4501422240,...];
E=[1,5,60,1020,21420,523320,14399280,437433780,14479664640,...];
F=[1,6,84,1638,38976,1068480,32716992,1098069504,39896236800,...];
G=[1,7,112,2464,65520,1991808,67189248,2469837888,97765355520,...];
H=[1,8,144,3528,103680,3461760,127569600,5098406400,218459165760,...];
PROG
(PARI) {a(n)=local(A=1+(n+1)*x); for(k=0, n, A=1+(n-k+1)*x*A^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A302605 A303260 A174494 * A032274 A374601 A182964
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 07 2007
STATUS
approved