login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128321
Column 0 of triangle A128320.
5
1, 1, 4, 17, 98, 622, 4512, 35373, 300974, 2722070, 26118056, 263266346, 2780054884, 30586452652, 349724463584, 4141218303165, 50678688359190, 639387728054310, 8302396672724280, 110754894628585950
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A000108(n-k)*A000108(k)*(k+1)!*C(n,2*k).
a(n) = Sum_{k=0..floor((n+1)/2)} ((k+1)!*C(2*(n-k), n-k)*C(2*k, k)*C(n, 2*k))/((k+1)*(n-k+1)).
a(n) = ( -(n-1)*(n-2)*a(n-1) + 4*(3*n^2 -5*n +1)*a(n-2) + 8*n*(n-2)^2* a(n-3) )/(n+1), with a(0) = 1, a(1) = 1, a(2) = 4. - G. C. Greubel, Jun 25 2024
a(n) ~ 2^(3*n/2 + 1) * exp(sqrt(2*n) - n/2 - 1/2) * n^((n-3)/2) / sqrt(Pi) * (1 - 7/(3*sqrt(2*n))). - Vaclav Kotesovec, Jun 25 2024
MATHEMATICA
a[n_]:= a[n]= If[n<3, (n!)^2, (-(n-1)*(n-2)*a[n-1] +4*(3*n^2-5*n +1)*a[n-2] + 8*(n-2)^2*n*a[n-3])/(n+1)];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jun 25 2024 *)
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(2*n-2*k, n-k)/(n-k+1)*binomial(2*k, k)/(k+1) *(k+1)!*binomial(n, 2*k))}
(Magma)
I:=[1, 1, 4]; [n le 3 select I[n] else (-(n-2)*(n-3)*Self(n-1) + 4*(3*(n-2)^2+n-3)*Self(n-2) + 8*(n-3)^2*(n-1)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Jun 25 2024
(SageMath)
@CachedFunction
def a(n): # a = A128321
if n<3: return (1, 1, 4)[n]
else: return (-(n-1)*(n-2)*a(n-1) + 4*(3*n^2-5*n+1)*a(n-2) + 8*(n-2)^2*n*a(n-3))/(n+1)
[a(n) for n in range(31)] # G. C. Greubel, Jun 25 2024
CROSSREFS
Cf. A128320 (triangle), A128322 (column 1), A128323 (column 2), A128324 (row sums); variant: A115081.
Cf. A000108 (Catalan numbers).
Sequence in context: A249078 A353546 A024052 * A290352 A091635 A306160
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2007
STATUS
approved