login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115081
Column 0 of triangle A115080.
7
1, 1, 3, 11, 50, 257, 1467, 9081, 60272, 424514, 3151226, 24510411, 198870388, 1676878231, 14648843341, 132228263355, 1230505582380, 11782173683640, 115878367974480, 1168833058344870, 12075008262774120, 127608480923659770
OFFSET
0,3
COMMENTS
Also equals row sums of triangle A125080.
FORMULA
a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A001147(k)*C(n,2*k), where A000108 is the Catalan numbers and A001147 is the double factorials.
a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n,2k)/2^k where A000108(n) = C(2n,n)/(n+1) are the Catalan numbers. a(n) = Sum_{k=0..n} (-1)^(n-k)*n!/k!*A115082(k) . - Paul D. Hanna, Feb 19 2007
EXAMPLE
At n=5, a(5) = Sum_{k=0..2} A000108(5-k)*A001147(k)*C(5,2*k) so that a(5) = 42*1*C(5,0) + 14*1*C(5,2) + 5*3*C(5,4) = 42*1*1 + 14*1*10 + 5*3*5 = 42 + 140 + 75 = 257.
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(2*n-2*k, n-k)/(n-k+1)*binomial(2*k, k)*k!/2^k*binomial(n, 2*k))}
(PARI) {a(n)=sum(k=0, n\2, (2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k )}
CROSSREFS
Cf. A115080, A115082 (column 1), A115083 (column 2), A115084 (row sums); A115086.
Cf. A125080 (related triangle); A000108, A001147.
Sequence in context: A024333 A024334 A162477 * A323672 A103466 A346762
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2006, Nov 19 2006
STATUS
approved