The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115081 Column 0 of triangle A115080. 7
 1, 1, 3, 11, 50, 257, 1467, 9081, 60272, 424514, 3151226, 24510411, 198870388, 1676878231, 14648843341, 132228263355, 1230505582380, 11782173683640, 115878367974480, 1168833058344870, 12075008262774120, 127608480923659770 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also equals row sums of triangle A125080. LINKS FORMULA a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A001147(k)*C(n,2*k), where A000108 is the Catalan numbers and A001147 is the double factorials. a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n,2k)/2^k where A000108(n) = C(2n,n)/(n+1) are the Catalan numbers. a(n) = Sum_{k=0..n} (-1)^(n-k)*n!/k!*A115082(k) . - Paul D. Hanna, Feb 19 2007 EXAMPLE At n=5, a(5) = Sum_{k=0..2} A000108(5-k)*A001147(k)*C(5,2*k) so that a(5) = 42*1*C(5,0) + 14*1*C(5,2) + 5*3*C(5,4) = 42*1*1 + 14*1*10 + 5*3*5 = 42 + 140 + 75 = 257. PROG (PARI) {a(n)=sum(k=0, n\2, binomial(2*n-2*k, n-k)/(n-k+1)*binomial(2*k, k)*k!/2^k*binomial(n, 2*k))} (PARI) {a(n)=sum(k=0, n\2, (2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k )} CROSSREFS Cf. A115080, A115082 (column 1), A115083 (column 2), A115084 (row sums); A115086. Cf. A125080 (related triangle); A000108, A001147. Sequence in context: A024333 A024334 A162477 * A323672 A103466 A346762 Adjacent sequences:  A115078 A115079 A115080 * A115082 A115083 A115084 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 13 2006, Nov 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)