login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 0 of triangle A115080.
7

%I #5 Mar 30 2012 18:36:55

%S 1,1,3,11,50,257,1467,9081,60272,424514,3151226,24510411,198870388,

%T 1676878231,14648843341,132228263355,1230505582380,11782173683640,

%U 115878367974480,1168833058344870,12075008262774120,127608480923659770

%N Column 0 of triangle A115080.

%C Also equals row sums of triangle A125080.

%F a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A001147(k)*C(n,2*k), where A000108 is the Catalan numbers and A001147 is the double factorials.

%F a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n,2k)/2^k where A000108(n) = C(2n,n)/(n+1) are the Catalan numbers. a(n) = Sum_{k=0..n} (-1)^(n-k)*n!/k!*A115082(k) . - _Paul D. Hanna_, Feb 19 2007

%e At n=5, a(5) = Sum_{k=0..2} A000108(5-k)*A001147(k)*C(5,2*k) so that a(5) = 42*1*C(5,0) + 14*1*C(5,2) + 5*3*C(5,4) = 42*1*1 + 14*1*10 + 5*3*5 = 42 + 140 + 75 = 257.

%o (PARI) {a(n)=sum(k=0,n\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)*k!/2^k*binomial(n,2*k))}

%o (PARI) {a(n)=sum(k=0,n\2,(2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k )}

%Y Cf. A115080, A115082 (column 1), A115083 (column 2), A115084 (row sums); A115086.

%Y Cf. A125080 (related triangle); A000108, A001147.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 13 2006, Nov 19 2006