login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162477
Expansion of (1/(1-x)^2)*c(x/(1-x)^4) where c(x) is the g.f. of A000108.
7
1, 3, 11, 50, 255, 1391, 7939, 46821, 283081, 1745212, 10929625, 69338213, 444668749, 2877994064, 18774736487, 123321704739, 814930698217, 5413955476648, 36138368789601, 242252716083298, 1630170332414433
OFFSET
0,2
COMMENTS
Partial sums of A162476.
LINKS
FORMULA
G.f.: 1/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - ... (continued fraction);
a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000108(k).
Conjecture: (n+1)*a(n) +4*(1-2*n)*a(n-1) +6*(n-2)*a(n-2) +2*(7-2*n)*a(n-3) +(n-5)*a(n-4) = 0. - R. J. Mathar, Nov 17 2011
G.f.: (1 - 2*x + x^2 - sqrt(1 - 8*x + 6*x^2 - 4*x^3 + x^4))/(2*x). Remark: using this form of the g.f., it is straightforward to prove the above conjectured recurrence. - Emanuele Munarini, Aug 31 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - x)^2. - Ilya Gutkovskiy, Jun 30 2020
G.f.: 1/G(x), where G(x) = 1 - (3*x - x^2)/(1 - x/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023
MATHEMATICA
Table[Sum[Binomial[n+3k+1, 4k+1]CatalanNumber[k], {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Aug 31 2017 *)
PROG
(Maxima) makelist(sum(binomial(n+3*k+1, 4*k+1)*binomial(2*k, k)/(k+1), k, 0, n), n, 0, 12); /* Emanuele Munarini, Aug 31 2017 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 04 2009
STATUS
approved