login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162480
Expansion of 1/((1-x)^2*sqrt(1-4x/(1-x)^4)).
1
1, 4, 21, 126, 797, 5190, 34439, 231556, 1572135, 10754148, 74001735, 511686726, 3552251429, 24743806370, 172853699427, 1210514603212, 8495774193707, 59739915525288, 420785972800187, 2968344133842182, 20967995689677183
OFFSET
0,2
FORMULA
G.f.: 1/((1-x)^2-2x/((1-x)^2-x/((1-x)^2-x/((1-x)^2-... (continued fraction);
a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000984(k).
D-finite with recurrence: n*a(n) +4*(1-2n)*a(n-1) +6*(n-1)*a(n-2) +2*(3-2n)*a(n-3) +(n-2)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
G.f.: 1/sqrt(1-8*t+6*t^2-4*t^3+t^4). Remark: using this form of the g.f., it is easy to prove the above recurrence. - Emanuele Munarini, Aug 31 2017
MATHEMATICA
CoefficientList[Series[1/((1-x)^2 Sqrt[1-4 x/(1-x)^4]), {x, 0, 20}], x] (* Harvey P. Dale, Jun 28 2017 *)
Table[Sum[Binomial[n+3k+1, 4k+1]Binomial[2k, k], {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Aug 31 2017 *)
PROG
(Maxima) makelist(sum(binomial(n+3*k+1, 4*k+1)*binomial(2*k, k), k, 0, n), n, 0, 12); /* Emanuele Munarini, Aug 31 2017 */
CROSSREFS
Partial sums of A162479.
Sequence in context: A370545 A366115 A195262 * A275758 A003168 A211249
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 04 2009
STATUS
approved