OFFSET
0,2
FORMULA
G.f.: 1/((1-x)^2-2x/((1-x)^2-x/((1-x)^2-x/((1-x)^2-... (continued fraction);
a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000984(k).
D-finite with recurrence: n*a(n) +4*(1-2n)*a(n-1) +6*(n-1)*a(n-2) +2*(3-2n)*a(n-3) +(n-2)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
G.f.: 1/sqrt(1-8*t+6*t^2-4*t^3+t^4). Remark: using this form of the g.f., it is easy to prove the above recurrence. - Emanuele Munarini, Aug 31 2017
MATHEMATICA
CoefficientList[Series[1/((1-x)^2 Sqrt[1-4 x/(1-x)^4]), {x, 0, 20}], x] (* Harvey P. Dale, Jun 28 2017 *)
Table[Sum[Binomial[n+3k+1, 4k+1]Binomial[2k, k], {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Aug 31 2017 *)
PROG
(Maxima) makelist(sum(binomial(n+3*k+1, 4*k+1)*binomial(2*k, k), k, 0, n), n, 0, 12); /* Emanuele Munarini, Aug 31 2017 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 04 2009
STATUS
approved