The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162480 Expansion of 1/((1-x)^2*sqrt(1-4x/(1-x)^4)). 1
 1, 4, 21, 126, 797, 5190, 34439, 231556, 1572135, 10754148, 74001735, 511686726, 3552251429, 24743806370, 172853699427, 1210514603212, 8495774193707, 59739915525288, 420785972800187, 2968344133842182, 20967995689677183 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: 1/((1-x)^2-2x/((1-x)^2-x/((1-x)^2-x/((1-x)^2-... (continued fraction); a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000984(k). D-finite with recurrence: n*a(n) +4*(1-2n)*a(n-1) +6*(n-1)*a(n-2) +2*(3-2n)*a(n-3) +(n-2)*a(n-4)=0. - R. J. Mathar, Nov 17 2011 G.f.: 1/sqrt(1-8*t+6*t^2-4*t^3+t^4). Remark: using this form of the g.f., it is easy to prove the above recurrence. - Emanuele Munarini, Aug 31 2017 MATHEMATICA CoefficientList[Series[1/((1-x)^2 Sqrt[1-4 x/(1-x)^4]), {x, 0, 20}], x] (* Harvey P. Dale, Jun 28 2017 *) Table[Sum[Binomial[n+3k+1, 4k+1]Binomial[2k, k], {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Aug 31 2017 *) PROG (Maxima) makelist(sum(binomial(n+3*k+1, 4*k+1)*binomial(2*k, k), k, 0, n), n, 0, 12); /* Emanuele Munarini, Aug 31 2017 */ CROSSREFS Partial sums of A162479. Sequence in context: A244062 A093965 A195262 * A275758 A003168 A211249 Adjacent sequences:  A162477 A162478 A162479 * A162481 A162482 A162483 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 08:29 EDT 2021. Contains 347664 sequences. (Running on oeis4.)