Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 20 2021 07:02:44
%S 1,4,21,126,797,5190,34439,231556,1572135,10754148,74001735,511686726,
%T 3552251429,24743806370,172853699427,1210514603212,8495774193707,
%U 59739915525288,420785972800187,2968344133842182,20967995689677183
%N Expansion of 1/((1-x)^2*sqrt(1-4x/(1-x)^4)).
%F G.f.: 1/((1-x)^2-2x/((1-x)^2-x/((1-x)^2-x/((1-x)^2-... (continued fraction);
%F a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000984(k).
%F D-finite with recurrence: n*a(n) +4*(1-2n)*a(n-1) +6*(n-1)*a(n-2) +2*(3-2n)*a(n-3) +(n-2)*a(n-4)=0. - _R. J. Mathar_, Nov 17 2011
%F G.f.: 1/sqrt(1-8*t+6*t^2-4*t^3+t^4). Remark: using this form of the g.f., it is easy to prove the above recurrence. - _Emanuele Munarini_, Aug 31 2017
%t CoefficientList[Series[1/((1-x)^2 Sqrt[1-4 x/(1-x)^4]),{x,0,20}],x] (* _Harvey P. Dale_, Jun 28 2017 *)
%t Table[Sum[Binomial[n+3k+1,4k+1]Binomial[2k,k],{k,0,n}],{n,0,100}] (* _Emanuele Munarini_, Aug 31 2017 *)
%o (Maxima) makelist(sum(binomial(n+3*k+1,4*k+1)*binomial(2*k,k),k,0,n),n,0,12); /* _Emanuele Munarini_, Aug 31 2017 */
%Y Partial sums of A162479.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 04 2009