login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366115
Expansion of (1/x) * Series_Reversion( x*(1+x+x^2)/(1+x)^5 ).
2
1, 4, 21, 125, 801, 5390, 37558, 268656, 1961355, 14555266, 109472688, 832625469, 6393072182, 49488174700, 385795571040, 3026190911853, 23867383581009, 189156323865632, 1505649098866535, 12031665674394905, 96486323017581420, 776255276240140980
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(4*n-k+4,n-2*k).
From Peter Bala, Aug 22 2024: (Start)
P-recursive: 6*n*(2*n+3)*(n^2-1)*(2021*n^3-8037*n^2+9946*n-3672)*a(n) = 4*n*(n-1)*(94987*n^5-282752*n^4+140624*n^3+146936*n^2-56373*n-18522)*a(n-1) - 6*(n-1)*(367822*n^6-1646645*n^5+2610582*n^4-1674935*n^3+259948*n^2+125940*n-35712)*a(n-2) + 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(2021*n^3-1974*n^2-65*n+258)*a(n-3) with a(0) = 1, a(1) = 4 and a(2) = 21.
G.f. A(x) satisfies 1 + x*A(x) = (1/x) * series_reversion( x/c(x*c(x)) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
MAPLE
seq(simplify(1/(n+1)*binomial(4*n+4, n)*hypergeom([n+1, -(1/2)*n, (1/2)*(1-n)], [3*n+5, -4*(n+1)], 4)), n = 0..20); # Peter Bala, Aug 22 2024
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(4*n-k+4, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 29 2023
STATUS
approved