login
A366114
Expansion of (1/x) * Series_Reversion( x*(1+x+x^2)/(1+x)^3 ).
1
1, 2, 4, 7, 9, 2, -34, -130, -284, -284, 730, 4864, 14860, 27134, 6462, -170865, -771303, -2005828, -2751028, 3491747, 36288137, 130265102, 283131062, 210905402, -1317613954, -7461822262, -22297519418, -38398674146, 10151248222, 355843715494, 1495838414326
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(2*n-k+2,n-2*k).
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(2*n-k+2, n-2*k))/(n+1);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 29 2023
STATUS
approved