The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A288305 Pairs of a prime number and square of prime number differs by 2. (Pseudo-twin). 1
 2, 4, 7, 9, 9, 11, 23, 25, 47, 49, 167, 169, 359, 361, 839, 841, 1367, 1369, 1847, 1849, 2207, 2209, 3719, 3721, 5039, 5041, 7919, 7921, 10607, 10609, 11447, 11449, 16127, 16129, 17159, 17161, 19319, 19321, 29927, 29929, 36479, 36481, 44519, 44521 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sum of reciprocals converges and (1/2) + (1/4) + (1/7) + (1/9) + (1/9) + (1/11) + (1/23) +... = 1.3569053... (constant). Are there infinitely many pairs? LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 MATHEMATICA Select[Join @@ Map[{{# - 2, #}, {#, # + 2}} &, Prime@ Range[10^4]], MemberQ[Sqrt@ #, _?(And[PrimeQ@ #] &)] &] // Flatten (* Michael De Vlieger, Jun 09 2017 *) PROG (PARI) { forprime(n=2, 300,               if(isprime(n^2-2), print1(n^2-2, ", "n^2", "));               if(isprime(n^2+2), print1(n^2, ", "n^2+2", "))             ) } (PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrtint(2+lim\1), t=p^2; if(isprime(t-2), listput(v, t-2); listput(v, t)); if(isprime(t+2), listput(v, t); listput(v, t+2))); select(k->k<=lim, Vec(v)) \\ Charles R Greathouse IV, Jun 09 2017 CROSSREFS Sequence in context: A094446 A071790 A199465 * A081249 A327217 A327207 Adjacent sequences:  A288302 A288303 A288304 * A288306 A288307 A288308 KEYWORD nonn AUTHOR Dimitris Valianatos, Jun 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 02:26 EDT 2021. Contains 343652 sequences. (Running on oeis4.)