login
Expansion of (1/x) * Series_Reversion( x*(1+x+x^2)/(1+x)^3 ).
1

%I #10 Sep 30 2023 13:08:50

%S 1,2,4,7,9,2,-34,-130,-284,-284,730,4864,14860,27134,6462,-170865,

%T -771303,-2005828,-2751028,3491747,36288137,130265102,283131062,

%U 210905402,-1317613954,-7461822262,-22297519418,-38398674146,10151248222,355843715494,1495838414326

%N Expansion of (1/x) * Series_Reversion( x*(1+x+x^2)/(1+x)^3 ).

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(2*n-k+2,n-2*k).

%o (PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(2*n-k+2, n-2*k))/(n+1);

%Y Cf. A127632, A364374, A366115.

%Y Cf. A279565.

%K sign

%O 0,2

%A _Seiichi Manyama_, Sep 29 2023