login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364374
G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^2).
8
1, 0, -1, 1, 2, -6, -1, 28, -31, -98, 288, 131, -1730, 1638, 7431, -19583, -15502, 135642, -99523, -664050, 1535896, 1816196, -11902728, 5944326, 64487669, -129346490, -213116764, 1112382523, -277762230, -6572175490, 11287106695, 25078981772, -107983368519, -1826241850
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1).
D-finite with recurrence 15*n*(n+1)*a(n) +2*n*(13*n-11)*a(n-1) +12*(9*n^2-19*n+9)*a(n-2) +2*(10*n^2-65*n+99)*a(n-3) -4*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
A(x) = (1/x) * series_reversion(x*(1 + x + x^2)/(1 + x)). - Peter Bala, Sep 08 2024
MAPLE
A364374 := proc(n)
add( (-1)^k*binomial(n+k+1, k) * binomial(n+k+1, n-k)/(n+k+1), k=0..n) ;
end proc:
seq(A364374(n), n=0..80); # R. J. Mathar, Jul 25 2023
MATHEMATICA
nmax = 33;
A[_] = 1;
Do[A[x_] = (1+x*A[x])*(1-x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k+1, k)*binomial(n+k+1, n-k)/(n+k+1));
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jul 21 2023
STATUS
approved