OFFSET
0,5
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1).
D-finite with recurrence 15*n*(n+1)*a(n) +2*n*(13*n-11)*a(n-1) +12*(9*n^2-19*n+9)*a(n-2) +2*(10*n^2-65*n+99)*a(n-3) -4*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
A(x) = (1/x) * series_reversion(x*(1 + x + x^2)/(1 + x)). - Peter Bala, Sep 08 2024
MAPLE
A364374 := proc(n)
add( (-1)^k*binomial(n+k+1, k) * binomial(n+k+1, n-k)/(n+k+1), k=0..n) ;
end proc:
seq(A364374(n), n=0..80); # R. J. Mathar, Jul 25 2023
MATHEMATICA
nmax = 33;
A[_] = 1;
Do[A[x_] = (1+x*A[x])*(1-x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k+1, k)*binomial(n+k+1, n-k)/(n+k+1));
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jul 21 2023
STATUS
approved