login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364372
G.f. satisfies A(x) = (1 + x) * (1 - x*A(x)^3).
5
1, 0, -1, 3, -6, 6, 15, -107, 349, -672, 39, 5835, -27654, 75765, -95799, -279129, 2297970, -8377854, 17663640, -996624, -177445221, 888491025, -2551959604, 3337931168, 10407149226, -87719805853, 328682535695, -708428979213, 15252552804, 7616368090377, -38693979668535
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * binomial(3*k+1,k) * binomial(3*k+1,n-k) / (3*k+1).
D-finite with recurrence 2*n*(2*n+1)*a(n) +(51*n-26)*(n-1)*a(n-1) +(279*n^2 -931*n +766)*a(n-2) +2*(413*n^2 -2127*n +2728)*a(n-3) +6*(75*n-244) *(3*n-11)*a(n-4) +9*(45*n-179) *(3*n-14)*a(n-5) +63*(3*n-14) *(3*n-17)*a(n-6) +12*(3*n-16) *(3*n-20)*a(n-7)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Aug 25 2024: (Start)
Fifth-order recurrence: 2*(n-2)*(n-1)*n*(2*n+1)*a(n) + (n-2)*(n-1)*(31*n^2-27*n+6)*a(n-1) + 3*(n-2)*(3*n-5)*(12*n^2-19*n+2)*a(n-2) + 3*(3*n-8)*(18*n^3-69*n^2+63*n-2)*a(n-3) + 3*n*(3*n-11)*(12*n^2-49*n+42)*a(n-4) + 3*n*(n-1)*(3*n-10)*(3*n-14)*a(n-5) = 0 with a(0) = 1, a(1) = 0, a(2) = -1, a(3) = 3 and a(4) = -6.
The g.f. A(x) satisfies (1/x) * series_reversion(x/A(x)) = 1 - x^2 + 3*x^3 - 4*x^4 - 9*x^5 + 73*x^6 - ..., the g.f. of A364376. (End)
MAPLE
A364372 := proc(n)
add( (-1)^k*binomial(3*k+1, k) * binomial(3*k+1, n-k)/(3*k+1), k=0..n) ;
end proc:
seq(A364372(n), n=0..80); # R. J. Mathar, Jul 25 2023
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jul 20 2023
STATUS
approved