OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(3*k+1,n-k) / (3*k+1).
D-finite with recurrence -2*n*(2*n+1)*a(n) +(3*n^2+23*n-14)*a(n-1) +(207*n^2 -635*n +494)*a(n-2) +2*(397*n^2 -2031*n +2600)*a(n-3) +6*(75*n-244) *(3*n-11)*a(n-4) +9*(45*n-179) *(3*n-14)*a(n-5) +63*(3*n-14) *(3*n-17)*a(n-6) +12*(3*n-16) *(3*n-20)*a(n-7)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + ..., the g.f. of A216359.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + ..., the g.f. of A215623. (End)
MAPLE
A364336 := proc(n)
add( binomial(3*k+1, k) * binomial(3*k+1, n-k)/(3*k+1), k=0..n) ;
end proc:
seq(A364336(n), n=0..80); # R. J. Mathar, Jul 25 2023
MATHEMATICA
nmax = 80; A[_] = 1;
Do[A[x_] = (1 + x)*(1 + x*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 19 2023
STATUS
approved