login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121752 Number of columns ending at an odd level in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. 2
1, 2, 7, 39, 235, 1746, 14166, 132408, 1341432, 15148080, 183764880, 2435607360, 34406268480, 523839899520, 8444375452800, 145266278169600, 2631329637350400, 50481429165619200, 1015073771517388800 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n)=Sum(k*A121697(n,k),k=0..n).

REFERENCES

E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.

E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

LINKS

Table of n, a(n) for n=1..19.

FORMULA

Recurrence relation: a(n)=(2n-3)a(n-1)-(n-1)(n-3)a(n-2)+(n-2)!(n*floor(n/2)-(n-2)*floor((n-1)/2)-1); a[1]=1, a[2]=2.

EXAMPLE

a(2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 0 and 2 columns ending at an odd level, respectively.

MAPLE

a[1]:=1: a[2]:=2: for n from 3 to 23 do a[n]:=(2*n-3)*a[n-1]-(n-1)*(n-3)*a[n-2]+(n-2)!*(n*floor(n/2)-(n-2)*floor((n-1)/2)-1) od: seq(a[n], n=1..23);

CROSSREFS

Cf. A121697, A121754.

Sequence in context: A222034 A014058 A119602 * A054133 A266310 A032118

Adjacent sequences:  A121749 A121750 A121751 * A121753 A121754 A121755

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Aug 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 22:17 EST 2019. Contains 329134 sequences. (Running on oeis4.)