login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121749 Number of deco polyominoes of height n, consisting only of columns of odd length. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. 2
1, 1, 2, 6, 16, 66, 246, 1248, 5976, 36120, 210480, 1479600, 10140480, 81340560, 640367280, 5773662720, 51312240000, 513773124480, 5085768280320, 55995414048000, 610811823283200, 7334879610643200, 87402605773190400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n)=A121748(n,0).

REFERENCES

E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.

E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

LINKS

Table of n, a(n) for n=1..23.

FORMULA

Recurrence relation: a(n)=floor(n/2)(a(n-1)+a(n-2)) for n>=3, a(1)=a(2)=1.

EXAMPLE

a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes and only the horizontal one consists only of columns of odd length.

MAPLE

a[1]:=1: a[2]:=1: for n from 3 to 26 do a[n]:=floor(n/2)*(a[n-1]+a[n-2]) od: seq(a[n], n=1..26);

CROSSREFS

Cf. A121746, A121748.

Sequence in context: A173994 A150032 A283420 * A009386 A009605 A009681

Adjacent sequences:  A121746 A121747 A121748 * A121750 A121751 A121752

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Aug 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 21:13 EST 2022. Contains 350664 sequences. (Running on oeis4.)